Solveeit Logo

Question

Question: Solution of the equation x dx + y dy + \(\frac{xdy - ydx}{x^{2} + y^{2}}\) = 0 is –...

Solution of the equation x dx + y dy + xdyydxx2+y2\frac{xdy - ydx}{x^{2} + y^{2}} = 0 is –

A

y = x tan (c+x2+y22)\left( \frac{c + x^{2} + y^{2}}{2} \right)

B

x = y tan (c+x2+y22)\left( \frac{c + x^{2} + y^{2}}{2} \right)

C

y = x tan (cx2y22)\left( \frac{c–x^{2}–y^{2}}{2} \right)

D

None of these

Answer

y = x tan (cx2y22)\left( \frac{c–x^{2}–y^{2}}{2} \right)

Explanation

Solution

We have, x dx + y dy + xdyydxx2+y2=0\frac{xdy - ydx}{x^{2} + y^{2}} = 0

Ž 12\frac{1}{2} d (x2 + y2) + d tan–1 (yx)\left( \frac{y}{x} \right) = 0

Integrating, 12\frac{1}{2} (x2 + y2) + tan–1 yx\frac{y}{x} = c2\frac{c}{2}

Ž x2 + y2 + 2 tan–1 yx\frac{y}{x} = c.

\ y = x tan (cx2y22)\left( \frac{c - x^{2} - y^{2}}{2} \right) is the required solution.

Hence (3) is the correct answer