Solveeit Logo

Question

Mathematics Question on homogeneous differential equation

Solution of the equation x2dy+y(x+y)dx=0x^2 dy + y (x + y) dx = 0 is

A

y+2x=C2x2yy + 2x = C^2 x^2 y

B

y2x=C2x2yy-2x=\frac{C^2x^2}{y}

C

y+2x=C2x2yy+2x=\frac{C^2x^2}{y}

D

none of these.

Answer

y+2x=C2x2yy + 2x = C^2 x^2 y

Explanation

Solution

x2dy+y(x+y)dx=0x^{2}\,dy+y\left(x + y\right)dx = 0 dydx=y(x+y)x2\Rightarrow \frac{dy}{dx} = -\frac{y\left(x+y\right)}{x^{2}}, homogeneous. Put y=vxy = vx dydx=v+xdvdx\therefore\frac{dy}{dx}=v+x \frac{dv}{dx} v+xdvdx=vx(x+vx)x2=vv2\therefore v+x \frac{dv}{dx} = -\frac{vx\left(x+vx\right)}{x^{2}} = -v-v^{2} xdvdx=2vv2\therefore x \frac{dv}{dx} = -2\,v-v^{2} dvv(2+v)=dxx\therefore \frac{dv}{-v\left(2+v\right)} = \frac{dx}{x} dvv(v+2)+dxx=0\Rightarrow \frac{dv}{v\left(v+2\right)}+\frac{dx}{x}=0 12(1v1v+2)dv+dxx=logC\Rightarrow \frac{1}{2} \int \left(\frac{1}{v}-\frac{1}{v+2}\right)dv+\int \frac{dx}{x} = log\,C 12logvv+2+logx=logC\Rightarrow \frac{1}{2} log \frac{v}{v+2} + log\,x=log\,C logvv+2+logx2=logC\Rightarrow log \frac{v}{v+2} + log\,x^{2}=log\,C vv+2.x2=C\Rightarrow \frac{v}{v+2}.x^{2} = C yxyx+2.x2=C\Rightarrow \frac{\frac{y}{x}}{\frac{y}{x}+2}.x^{2} = C yy+2x.x2=C\Rightarrow \frac{y}{y+2x}.x^{2}=C y+2x=1Cx2y\Rightarrow y+2x = \frac{1}{C}x^{2}y =C2x2y= C^{2}x^{2}y (Take 1C=C2\frac{1}{C}= C^{2}) y+2x=C2x2y\Rightarrow y + 2x=C^{2}x^{2}y.