Solveeit Logo

Question

Mathematics Question on homogeneous differential equation

Solution of the equation secθcosecθ=43\sec \theta - cosec \:\theta=\frac{4}{3} is

A

θ=nπ2+(1)n2sin134\theta=\frac{n\pi}{2}+\frac{(-1)^n}{2}\sin^{-1}\frac{3}{4}

B

θ=nπ+(1)nsin134\theta=n\pi+(-1)^n \sin^{-1}\frac{3}{4}

C

θ=nπ±sin1(34)\theta=n\pi\pm \sin^{-1}\left(\frac{3}{4}\right)

D

None of these.

Answer

θ=nπ2+(1)n2sin134\theta=\frac{n\pi}{2}+\frac{(-1)^n}{2}\sin^{-1}\frac{3}{4}

Explanation

Solution

We have 1cosθ1sinθ=43\frac{1}{\cos \, \theta} -\frac{1}{\sin \, \theta} = \frac{4}{3} \Rightarrow sinθcosθ=43sinθcosθ\sin\, \theta - \cos \,\theta = \frac{4}{3} \sin\, \theta \,\cos \,\theta 3(sinθcosθ)=2sinθ\Rightarrow\, 3\left(\sin\, \theta - \cos \,\theta\right) = 2\, \sin \,\theta 9(sin2θ+cos2θ2sinθcosθ)=4sin22θ\Rightarrow \,9\left(\sin^{2} \,\theta +\cos^{2}\,\theta - 2\, \sin\, \theta\, \cos \, \theta\right) = 4\, \sin^{2}\, 2\,\theta 9(1sin2θ)=4sin2θ\Rightarrow \,9\left(1 - \sin\, 2\theta\right) = 4 \sin^{2} \,\theta sin2θ=34\Rightarrow\, \sin\, 2 \, \theta = \frac{3}{4} or sin2θ=3\sin \,2 \, \theta = - 3 But sin2θ=3\sin \, 2 \, \theta = - 3 is not possible. \therefore sin2θ=34\sin\, 2\theta = \frac{3}{4} \therefore 2θ=nπ+(1)nsin1342\theta = n\pi +\left(-1\right)^{n } \sin^{-1} \frac{3}{4} θ=nπ2+(1)n2sin(34),nI\Rightarrow \theta = \frac{n\pi}{2 } + \frac{\left(-1\right)^{n}}{2} sin \left(\frac{3}{4}\right), n \in I