Solveeit Logo

Question

Question: Solution of the equation \(\cos x \cos y \frac { d y } { d x } = - \sin x \sin y\)is...

Solution of the equation cosxcosydydx=sinxsiny\cos x \cos y \frac { d y } { d x } = - \sin x \sin yis

A

siny+cosx=c\sin y + \cos x = c

B

sinycosx=c\sin y - \cos x = c

C

sinycosx=c\sin y \cdot \cos x = c

D

siny=ccosx\sin y = c \cos x

Answer

siny=ccosx\sin y = c \cos x

Explanation

Solution

cosxcosydydx=sinxsiny\cos x \cos y \frac { d y } { d x } = - \sin x \sin y

cosysinydy=sinxcosxdx\frac { \cos y } { \sin y } d y = - \frac { \sin x } { \cos x } d xcotydy=tanxdx\cot y d y = - \tan x d x

On integrating, we get

logsiny=logcosx+logc\log \sin y = \log \cos x + \log csiny=ccosx\sin y = c \cos x .