Question
Question: Solution of the equation \(\left( e ^ { x } + 1 \right) y d y = ( y + 1 ) e ^ { x } d x\) is...
Solution of the equation (ex+1)ydy=(y+1)exdx is
A
c(y+1)(ex+1)+ey=0
B
c(y+1)(ex−1)+ey=0
C
c(y+1)(ex−1)−ey=0
D
c(y+1)(ex+1)=ey
Answer
c(y+1)(ex+1)=ey
Explanation
Solution
(ex+1)ydy=(y+1)exdx
⇒ (y+1y)dy=(ex+1ex)dx⇒ [1−y+11]dy=(ex+1ex)dx
⇒ ∫{1−y+11}dy=∫ex+1exdx
⇒ y=log(y+1)+log(ex+1)+logc or ey=c(y+1)(ex+1) .