Solveeit Logo

Question

Question: Solution of the equation \[3\tan \left( \theta -{{15}^{\circ }} \right)=\tan \left( \theta +{{15}^{\...

Solution of the equation 3tan(θ15)=tan(θ+15)3\tan \left( \theta -{{15}^{\circ }} \right)=\tan \left( \theta +{{15}^{\circ }} \right) is
1. θ=nππ3\theta =n\pi -\dfrac{\pi }{3}
2. θ=nπ+π3\theta =n\pi +\dfrac{\pi }{3}
3. θ=nππ4\theta =n\pi -\dfrac{\pi }{4}
4. θ=nπ2+(1)nπ4\theta =\dfrac{n\pi }{2}+{{(-1)}^{n}}\dfrac{\pi }{4}

Explanation

Solution

Here we have been given a trigonometric equation and we have to find the value of the angle in it. Firstly we will take the constant term one side and the trigonometric value on the other side. Then we will use componendo and dividendo for simplifying our terms. Finally by using the addition and subtraction formula of trigonometry we will simplify our value and get the desired answer.

Complete answer: We have to find the solution of,
3tan(θ15)=tan(θ+15)3\tan \left( \theta -{{15}^{\circ }} \right)=\tan \left( \theta +{{15}^{\circ }} \right)
Taking the constant on one side and trigonometric value on another we get,
tan(θ+15)tan(θ15)=31\Rightarrow \dfrac{\tan \left( \theta +{{15}^{\circ }} \right)}{\tan \left( \theta -{{15}^{\circ }} \right)}=\dfrac{3}{1}
The componendo and dividendo formula is given as,
For any ab=cd\dfrac{a}{b}=\dfrac{c}{d} we can write it as a+bab=c+dcd\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}
Using above formula we get,
tan(θ+15)+tan(θ15)tan(θ+15)tan(θ15)=3+131\Rightarrow \dfrac{\tan \left( \theta +{{15}^{\circ }} \right)+\tan \left( \theta -{{15}^{\circ }} \right)}{\tan \left( \theta +{{15}^{\circ }} \right)-\tan \left( \theta -{{15}^{\circ }} \right)}=\dfrac{3+1}{3-1}
tan(θ+15)+tan(θ15)tan(θ+15)tan(θ15)=42\Rightarrow \dfrac{\tan \left( \theta +{{15}^{\circ }} \right)+\tan \left( \theta -{{15}^{\circ }} \right)}{\tan \left( \theta +{{15}^{\circ }} \right)-\tan \left( \theta -{{15}^{\circ }} \right)}=\dfrac{4}{2}
So we get,
tan(θ+15)+tan(θ15)tan(θ+15)tan(θ15)=2\dfrac{\tan \left( \theta +{{15}^{\circ }} \right)+\tan \left( \theta -{{15}^{\circ }} \right)}{\tan \left( \theta +{{15}^{\circ }} \right)-\tan \left( \theta -{{15}^{\circ }} \right)}=2…..(1)\left( 1 \right)
Now as we know tangent can be written in form of sine and cosine as follows,
tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A}
Using it in equation (1) we get,
sin(θ+15)cos(θ+15)+sin(θ15)cos(θ15)sin(θ+15)cos(θ+15)sin(θ15)cos(θ15)=2\Rightarrow \dfrac{\dfrac{\sin \left( \theta +{{15}^{\circ }} \right)}{\cos \left( \theta +{{15}^{\circ }} \right)}+\dfrac{\sin \left( \theta -{{15}^{\circ }} \right)}{\cos \left( \theta -{{15}^{\circ }} \right)}}{\dfrac{\sin \left( \theta +{{15}^{\circ }} \right)}{\cos \left( \theta +{{15}^{\circ }} \right)}-\dfrac{\sin \left( \theta -{{15}^{\circ }} \right)}{\cos \left( \theta -{{15}^{\circ }} \right)}}=2
Taking L.C.M in numerator and denominator we get,
sin(θ+15)cos(θ15)+sin(θ15)cos(θ+15)cos(θ+15)cos(θ15)sin(θ+15)cos(θ15)sin(θ15)cos(θ+15)cos(θ+15)cos(θ15)=2\Rightarrow \dfrac{\dfrac{\sin \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)+\sin \left( \theta -{{15}^{\circ }} \right)\cos \left( \theta +{{15}^{\circ }} \right)}{\cos \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)}}{\dfrac{\sin \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)-\sin \left( \theta -{{15}^{\circ }} \right)\cos \left( \theta +{{15}^{\circ }} \right)}{\cos \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)}}=2
Cancelling the common value of numerator and denominator we get,
sin(θ+15)cos(θ15)+sin(θ15)cos(θ+15)sin(θ+15)cos(θ15)sin(θ15)cos(θ+15)=2\Rightarrow \dfrac{\sin \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)+\sin \left( \theta -{{15}^{\circ }} \right)\cos \left( \theta +{{15}^{\circ }} \right)}{\sin \left( \theta +{{15}^{\circ }} \right)\cos \left( \theta -{{15}^{\circ }} \right)-\sin \left( \theta -{{15}^{\circ }} \right)\cos \left( \theta +{{15}^{\circ }} \right)}=2…..(2)\left( 2 \right)
Next we know the Addition and subtraction formula for sine is as follows,
sin(A+B)=sinAcosB+cosAsinB\sin (A+B)=\sin A\cos B+\cos A\sin B
sin(AB)=sinAcosBcosAsinB\sin (A-B)=\sin A\cos B-\cos A\sin B
Using the above formula in equation (2) where A=θA=\theta and B=15B={{15}^{\circ }} we get,
sin(θ+15+θ15)sin(θ+15θ+15)=2\Rightarrow \dfrac{\sin (\theta +{{15}^{\circ }}+\theta -{{15}^{\circ }})}{\sin (\theta +{{15}^{\circ }}-\theta +{{15}^{\circ }})}=2
sin(2θ)sin(30)=2\Rightarrow \dfrac{\sin (2\theta )}{\sin ({{30}^{\circ }})}=2
We know that sin30=12\sin {{30}^{\circ }}=\dfrac{1}{2} substitute above,
sin(2θ)12=2\Rightarrow \dfrac{\sin (2\theta )}{\dfrac{1}{2}}=2
2sin(2θ)=2\Rightarrow 2\sin \left( 2\theta \right)=2
Simplifying we get,
sin(2θ)=1\Rightarrow \sin \left( 2\theta \right)=1
We know sinπ2=1\sin \dfrac{\pi }{2}=1 so we get,
sin(2θ)=sinπ2\Rightarrow \sin \left( 2\theta \right)=\sin \dfrac{\pi }{2}
We know that general solution of above term is calculated as
θ=nπ+(1)nα\theta =n\pi +{{\left( -1 \right)}^{n}}\alpha
Where α=\alpha = Angle on the right side and θ=\theta = angle on the left side so we get,
2θ=nπ+(1)nπ22\theta =n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{2}
θ=nπ2+(1)nπ4\Rightarrow \theta =\dfrac{n\pi }{2}+{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}
Hence the correct answer is (4).

Note:
This type of question required very much attention as the calculation is big there is a chance of error in it. Always write each step so that we don’t get confused and don’t make any silly mistake. First step when we have cotangent or tangent function is to change them into sine and cosine function as they are easier to find. The componendo and dividendo method is used to form term whose formula is already known to us.