Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

Solution of the differential equation xdyydxx2+y2dx=0xdy - ydx - \sqrt{x^{2}+y^{2}}dx = 0 is

A

yx2+y2=Cx2y-\sqrt{x^{2}+y^{2}}=Cx^{2}

B

y+x2+y2=Cx2y+\sqrt{x^{2}+y^{2}}=Cx^{2}

C

x+x2+y2=Cx2x+\sqrt{x^{2}+y^{2}}=Cx^{2}

D

xx2+y2=Cx2x-\sqrt{x^{2}+y^{2}}=Cx^{2}

Answer

y+x2+y2=Cx2y+\sqrt{x^{2}+y^{2}}=Cx^{2}

Explanation

Solution

The given differential equation is
xdyydxx2+y2dx=0xdy-ydx-\sqrt{x^{2}+y^{2}}dx=0
xdy=(y+x2+y2)dx\Rightarrow\quad xdy=\left(y+\sqrt{x^{2}+y^{2}}\right)dx
dydx=(y+x2+y2)x\Rightarrow \quad\frac{dy}{dx}=\frac{\left(y+\sqrt{x^{2}+y^{2}}\right)}{x}
This is the linear differential equation.
Put y = vx, so that dydx=v+xdydx.\frac{dy}{dx}=v+x\frac{dy}{dx}.Then
v+xdydx=vx+x2+v2x2xv+x\frac{dy}{dx}=\frac{vx+\sqrt{x^{2}+v^{2}x^{2}}}{x}
v+xdydx=v+1+v2\Rightarrow\quad v+x\frac{dy}{dx}=v+\sqrt{1+v^{2}}
dv1+v2=dxx\quad\quad\quad\frac{dv}{\sqrt{1+v^{2}}}=\frac{dx}{x}
Integrating both sides, we get
dv1+v2=dxx\int\frac{dv}{\sqrt{1+v^{2}}}=\int\frac{dx}{x}
log(v+1+v2)=logx+logC\Rightarrow\quad log\left(v+\sqrt{1+v^{2}}\right)=log x + log C
v+1+v2=Cx\Rightarrow \quad v+\sqrt{1+v^{2}}=Cx
yx+1+y2x2=Cx[y=vx]\Rightarrow \quad \frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}=Cx\quad\left[\because y=vx\right]
y+x2+y2=Cx2y+\sqrt{x^{2}+y^{2}}=Cx^{2}