Solveeit Logo

Question

Question: Solution of the differential equation $\left(x\frac{dy}{dx}+y\right)=e^{xy-lnx^2}\left(x\frac{dy}{dx...

Solution of the differential equation (xdydx+y)=exylnx2(xdydxy)\left(x\frac{dy}{dx}+y\right)=e^{xy-lnx^2}\left(x\frac{dy}{dx}-y\right):

A

yxexy=c\frac{y}{x}-e^{-xy}=c

B

xy+exy=c\frac{x}{y}+e^{-xy}=c

C

yx+exy=c\frac{y}{x}+e^{-xy}=c

D

xy+exy=c-\frac{x}{y}+e^{-xy}=c

Answer

yx+exy=c\frac{y}{x}+e^{-xy}=c

Explanation

Solution

The given differential equation is: (xdydx+y)=exylnx2(xdydxy)\left(x\frac{dy}{dx}+y\right)=e^{xy-lnx^2}\left(x\frac{dy}{dx}-y\right) First, simplify the exponential term: exylnx2=exyelnx2=exyeln(x2)=exyx2=exyx2e^{xy-lnx^2} = e^{xy} \cdot e^{-lnx^2} = e^{xy} \cdot e^{ln(x^{-2})} = e^{xy} \cdot x^{-2} = \frac{e^{xy}}{x^2} Substitute this back into the differential equation: xdydx+y=exyx2(xdydxy)x\frac{dy}{dx}+y = \frac{e^{xy}}{x^2}\left(x\frac{dy}{dx}-y\right) We can recognize that the left side is the derivative of the product xyxy: ddx(xy)=xdydx+y\frac{d}{dx}(xy) = x\frac{dy}{dx}+y And the term xdydxyx\frac{dy}{dx}-y is related to the derivative of the quotient yx\frac{y}{x}: ddx(yx)=xdydxyx2    xdydxy=x2ddx(yx)\frac{d}{dx}\left(\frac{y}{x}\right) = \frac{x\frac{dy}{dx}-y}{x^2} \implies x\frac{dy}{dx}-y = x^2\frac{d}{dx}\left(\frac{y}{x}\right) Substitute these into the differential equation: ddx(xy)=exyx2(x2ddx(yx))\frac{d}{dx}(xy) = \frac{e^{xy}}{x^2}\left(x^2\frac{d}{dx}\left(\frac{y}{x}\right)\right) ddx(xy)=exyddx(yx)\frac{d}{dx}(xy) = e^{xy}\frac{d}{dx}\left(\frac{y}{x}\right) Let u=xyu = xy and v=yxv = \frac{y}{x}. The equation becomes: dudx=eudvdx\frac{du}{dx} = e^u \frac{dv}{dx} This is a separable differential equation. Rearrange and integrate: 1eudu=dv\frac{1}{e^u} du = dv eudu=dve^{-u} du = dv eudu=dv\int e^{-u} du = \int dv eu=v+C-e^{-u} = v + C Substitute back u=xyu = xy and v=yxv = \frac{y}{x}: exy=yx+C-e^{-xy} = \frac{y}{x} + C Rearranging the terms: yx+exy=C\frac{y}{x} + e^{-xy} = -C Let c=Cc = -C be a new arbitrary constant. yx+exy=c\frac{y}{x} + e^{-xy} = c