Solveeit Logo

Question

Question: Solution of the differential equation $\left(x \frac{dy}{dx}+y\right) = e^{xy-lnx^2} \left(x \frac{d...

Solution of the differential equation (xdydx+y)=exylnx2(xdydxy)\left(x \frac{dy}{dx}+y\right) = e^{xy-lnx^2} \left(x \frac{dy}{dx}-y\right):

A

yxexy=c\frac{y}{x}-e^{-xy} = c

B

xy+exy=c\frac{x}{y}+e^{-xy} = c

C

yx+exy=c\frac{y}{x}+e^{-xy} = c

D

xy+exy=c-\frac{x}{y}+e^{-xy} = c

Answer

yx+exy=c\frac{y}{x}+e^{-xy} = c

Explanation

Solution

The given differential equation is: (xdydx+y)=exylnx2(xdydxy)\left(x \frac{dy}{dx}+y\right) = e^{xy-lnx^2} \left(x \frac{dy}{dx}-y\right) First, simplify the exponential term: exylnx2=exyelnx2=exy1x2e^{xy-lnx^2} = e^{xy} \cdot e^{-lnx^2} = e^{xy} \cdot \frac{1}{x^2} Substitute this back into the equation: (xdydx+y)=exyx2(xdydxy)\left(x \frac{dy}{dx}+y\right) = \frac{e^{xy}}{x^2} \left(x \frac{dy}{dx}-y\right) Multiply both sides by x2x^2: x2(xdydx+y)=exy(xdydxy)x^2 \left(x \frac{dy}{dx}+y\right) = e^{xy} \left(x \frac{dy}{dx}-y\right) Rearrange the terms to group dydx\frac{dy}{dx} and yy: x3dydx+x2y=xexydydxyexyx^3 \frac{dy}{dx} + x^2 y = x e^{xy} \frac{dy}{dx} - y e^{xy} x3dydxxexydydx=x2yyexyx^3 \frac{dy}{dx} - x e^{xy} \frac{dy}{dx} = -x^2 y - y e^{xy} dydx(x3xexy)=y(x2+exy)\frac{dy}{dx} (x^3 - x e^{xy}) = -y (x^2 + e^{xy}) dydx=y(x2+exy)x(x2exy)\frac{dy}{dx} = \frac{-y (x^2 + e^{xy})}{x (x^2 - e^{xy})} This does not seem to lead to a simple separation. Let's try another manipulation.

Divide the original equation by x2x^2: xdydx+yx2=exylnx2x2(xdydxy)\frac{x \frac{dy}{dx}+y}{x^2} = \frac{e^{xy-lnx^2}}{x^2} \left(x \frac{dy}{dx}-y\right) Recognize that ddx(yx)=xdydxyx2\frac{d}{dx}\left(\frac{y}{x}\right) = \frac{x \frac{dy}{dx}-y}{x^2} and ddx(xy)=xdydx+y\frac{d}{dx}(xy) = x \frac{dy}{dx}+y. So the equation becomes: 1x2ddx(xy)=exyx4(xdydxy)\frac{1}{x^2} \frac{d}{dx}(xy) = \frac{e^{xy}}{x^4} \left(x \frac{dy}{dx}-y\right) This is still not directly separable.

Let's divide the original equation by x2exyx^2 e^{xy}: xdydx+yx2exy=exylnx2x2exy(xdydxy)\frac{x \frac{dy}{dx}+y}{x^2 e^{xy}} = \frac{e^{xy-lnx^2}}{x^2 e^{xy}} \left(x \frac{dy}{dx}-y\right) xdydx+yx2exy=1x2exy(xdydxy)\frac{x \frac{dy}{dx}+y}{x^2 e^{xy}} = \frac{1}{x^2 e^{xy}} \left(x \frac{dy}{dx}-y\right) This is not simplifying.

Let's rearrange the equation as: (xdydx+y)=exyx2(xdydxy)\left(x \frac{dy}{dx}+y\right) = \frac{e^{xy}}{x^2} \left(x \frac{dy}{dx}-y\right) Divide both sides by x2x^2: xdydx+yx2=exyx4(xdydxy)\frac{x \frac{dy}{dx}+y}{x^2} = \frac{e^{xy}}{x^4} \left(x \frac{dy}{dx}-y\right) 1x2ddx(xy)=exyx21x2(xdydxy)\frac{1}{x^2}\frac{d}{dx}(xy) = \frac{e^{xy}}{x^2} \frac{1}{x^2}(x \frac{dy}{dx}-y) 1x2ddx(xy)=exyx2ddx(yx)\frac{1}{x^2}\frac{d}{dx}(xy) = \frac{e^{xy}}{x^2} \frac{d}{dx}\left(\frac{y}{x}\right) This is still not separable.

Let's try dividing the original equation by x2x^2: xdydx+yx2=exyx4(xdydxy)\frac{x \frac{dy}{dx}+y}{x^2} = \frac{e^{xy}}{x^4} \left(x \frac{dy}{dx}-y\right) ddx(yx)=exyx21x2(xdydxy)\frac{d}{dx}\left(\frac{y}{x}\right) = \frac{e^{xy}}{x^2} \frac{1}{x^2} \left(x \frac{dy}{dx}-y\right) ddx(yx)=exyx2ddx(yx)\frac{d}{dx}\left(\frac{y}{x}\right) = \frac{e^{xy}}{x^2} \frac{d}{dx}\left(\frac{y}{x}\right) This equation implies either ddx(yx)=0\frac{d}{dx}\left(\frac{y}{x}\right) = 0 or 1=exyx21 = \frac{e^{xy}}{x^2}.

Case 1: ddx(yx)=0\frac{d}{dx}\left(\frac{y}{x}\right) = 0 This means yx=c\frac{y}{x} = c, or y=cxy = cx. Substituting this into the original equation gives x(c)+cx=ecx2lnx2(x(c)cx)x(c) + cx = e^{cx^2 - \ln x^2} (x(c) - cx), which simplifies to 2cx=02cx = 0. This implies c=0c=0, so y=0y=0, which is a trivial solution.

Case 2: 1=exyx21 = \frac{e^{xy}}{x^2} exy=x2e^{xy} = x^2 Taking the natural logarithm on both sides: xy=ln(x2)xy = \ln(x^2) xy=2lnxxy = 2 \ln x This is not in the form of the options.

Let's go back to the equation: (xdydx+y)=exyx2(xdydxy)\left(x \frac{dy}{dx}+y\right) = \frac{e^{xy}}{x^2} \left(x \frac{dy}{dx}-y\right) Divide by x2x^2: xdydx+yx2=exyx4(xdydxy)\frac{x \frac{dy}{dx}+y}{x^2} = \frac{e^{xy}}{x^4} \left(x \frac{dy}{dx}-y\right) ddx(yx)=exyx21x2(xdydxy)\frac{d}{dx}\left(\frac{y}{x}\right) = \frac{e^{xy}}{x^2} \frac{1}{x^2} \left(x \frac{dy}{dx}-y\right) ddx(yx)=exyx2ddx(yx)\frac{d}{dx}\left(\frac{y}{x}\right) = \frac{e^{xy}}{x^2} \frac{d}{dx}\left(\frac{y}{x}\right) This is incorrect.

Let's re-examine the original equation: (xdydx+y)=exylnx2(xdydxy)\left(x \frac{dy}{dx}+y\right) = e^{xy-lnx^2} \left(x \frac{dy}{dx}-y\right) xdydx+yxdydxy=exylnx2\frac{x \frac{dy}{dx}+y}{x \frac{dy}{dx}-y} = e^{xy-lnx^2} xdydx+yxdydxy=exyx2\frac{x \frac{dy}{dx}+y}{x \frac{dy}{dx}-y} = \frac{e^{xy}}{x^2} x2(xdydx+y)=exy(xdydxy)x^2 \left(x \frac{dy}{dx}+y\right) = e^{xy} \left(x \frac{dy}{dx}-y\right) x3dydx+x2y=xexydydxyexyx^3 \frac{dy}{dx} + x^2 y = x e^{xy} \frac{dy}{dx} - y e^{xy} x3dydxxexydydx=x2yyexyx^3 \frac{dy}{dx} - x e^{xy} \frac{dy}{dx} = -x^2 y - y e^{xy} dydx(x3xexy)=y(x2+exy)\frac{dy}{dx} (x^3 - x e^{xy}) = -y (x^2 + e^{xy}) dydx=y(x2+exy)x(x2exy)\frac{dy}{dx} = \frac{-y (x^2 + e^{xy})}{x (x^2 - e^{xy})}

Let's try dividing the original equation by x2x^2: xdydx+yx2=exyx4(xdydxy)\frac{x \frac{dy}{dx}+y}{x^2} = \frac{e^{xy}}{x^4} \left(x \frac{dy}{dx}-y\right) ddx(yx)=exyx21x2(xdydxy)\frac{d}{dx}\left(\frac{y}{x}\right) = \frac{e^{xy}}{x^2} \frac{1}{x^2} \left(x \frac{dy}{dx}-y\right) ddx(yx)=exyx2ddx(yx)\frac{d}{dx}\left(\frac{y}{x}\right) = \frac{e^{xy}}{x^2} \frac{d}{dx}\left(\frac{y}{x}\right) This is incorrect.

Let's divide the original equation by x2x^2: xdydx+yx2=exylnx2x2(xdydxy)\frac{x \frac{dy}{dx}+y}{x^2} = \frac{e^{xy-lnx^2}}{x^2} \left(x \frac{dy}{dx}-y\right) ddx(yx)=exyx4(xdydxy)\frac{d}{dx}\left(\frac{y}{x}\right) = \frac{e^{xy}}{x^4} \left(x \frac{dy}{dx}-y\right) This is incorrect.

Let's divide the original equation by x2x^2: xdydx+yx2=exyx4(xdydxy)\frac{x \frac{dy}{dx}+y}{x^2} = \frac{e^{xy}}{x^4} \left(x \frac{dy}{dx}-y\right) ddx(yx)=exyx21x2(xdydxy)\frac{d}{dx}\left(\frac{y}{x}\right) = \frac{e^{xy}}{x^2} \frac{1}{x^2} (x \frac{dy}{dx}-y) ddx(yx)=exyx2ddx(yx)\frac{d}{dx}\left(\frac{y}{x}\right) = \frac{e^{xy}}{x^2} \frac{d}{dx}\left(\frac{y}{x}\right) This is incorrect.

Let's rewrite the equation as: xdydx+yexy=1x2(xdydxy)\frac{x \frac{dy}{dx}+y}{e^{xy}} = \frac{1}{x^2} \left(x \frac{dy}{dx}-y\right) Multiply by dxdx: xdy+ydxexy=xdyydxx2\frac{x dy + y dx}{e^{xy}} = \frac{x dy - y dx}{x^2} d(xy)exy=d(yx)\frac{d(xy)}{e^{xy}} = d\left(\frac{y}{x}\right) Integrate both sides: d(xy)exy=d(yx)\int \frac{d(xy)}{e^{xy}} = \int d\left(\frac{y}{x}\right) Let u=xyu = xy, then du=(xdy+ydx)du = (x dy + y dx). dueu=yx+c\int \frac{du}{e^u} = \frac{y}{x} + c eudu=yx+c\int e^{-u} du = \frac{y}{x} + c eu=yx+c-e^{-u} = \frac{y}{x} + c Substitute back u=xyu = xy: exy=yx+c-e^{-xy} = \frac{y}{x} + c yx+exy=c\frac{y}{x} + e^{-xy} = -c Let C=cC = -c. yx+exy=C\frac{y}{x} + e^{-xy} = C This matches the third option.