Solveeit Logo

Question

Question: Solution of the differential equation \(\left\{ \frac{1}{x} - \frac{y^{2}}{(x - y)^{2}} \right\}\)d...

Solution of the differential equation

{1xy2(xy)2}\left\{ \frac{1}{x} - \frac{y^{2}}{(x - y)^{2}} \right\}dx + {x2(xy)21y}\left\{ \frac{x^{2}}{(x - y)^{2}} - \frac{1}{y} \right\}dy = 0 is

A

lnxy\left| \frac{x}{y} \right| + xyxy\frac{xy}{x - y} = c

B

xyxy\frac{xy}{x - y} = cex/y

C

ln |xy| = c + xyxy\frac{xy}{x - y}

D

None of these

Answer

lnxy\left| \frac{x}{y} \right| + xyxy\frac{xy}{x - y} = c

Explanation

Solution

(dxxdyy)+(x2dyy2dx(xy)2)\left( \frac{dx}{x} - \frac{dy}{y} \right) + \left( \frac{x^{2}dy - y^{2}dx}{(x - y)^{2}} \right) = 0

(dxxdyy)\left( \frac{dx}{x} - \frac{dy}{y} \right)+ (dyy2dxx2)(1y1x)2\frac{\left( \frac{dy}{y^{2}} - \frac{dx}{x^{2}} \right)}{\left( \frac{1}{y} - \frac{1}{x} \right)^{2}} = 0

(dxxdyy)\left( \frac{dx}{x} - \frac{dy}{y} \right)+ [dyy2dxx2(1x1y)2]\left\lbrack \frac{\frac{dy}{y^{2}} - \frac{dx}{x^{2}}}{\left( \frac{1}{x} - \frac{1}{y} \right)^{2}} \right\rbrack = 0

ln |x| – ln |y| – 1(1x1y)\frac{1}{\left( \frac{1}{x} - \frac{1}{y} \right)} = c

ln xy\left| \frac{x}{y} \right| + xyxy\frac{xy}{x - y} = c