Solveeit Logo

Question

Question: Solution of the differential equation \(\left( {\cos x} \right)dy = y\left( {\sin x - y} \right)dx,0...

Solution of the differential equation (cosx)dy=y(sinxy)dx,0<x<π2\left( {\cos x} \right)dy = y\left( {\sin x - y} \right)dx,0 < x < \dfrac{\pi }{2} is:
A) ysecx=tanx+cy\sec x = \tan x + c
B) ytanx=secx+cy\tan x = \sec x + c
C) tanx=(secx+c)y\tan x = \left( {\sec x + c} \right)y
D) secx=(tanx+c)y\sec x = \left( {\tan x + c} \right)y

Explanation

Solution

Write the equation in the form of dydx+f(x)×y=g(x)\dfrac{{dy}}{{dx}} + f\left( x \right) \times y = g\left( x \right) and then find the integrating factor
IF=ef(x)dxIF = {e^{\int {f\left( x \right)dx} }} and we know the general equation will become
(IF)y=(IF)g(x)dx+c\left( {IF} \right)y = \int {\left( {IF} \right)g\left( x \right)dx + c}

Complete step-by-step answer:
Here we are given a differential equation
(cosx)dy=y(sinxy)dx\left( {\cos x} \right)dy = y\left( {\sin x - y} \right)dx
So, we arrange it in the form of dydx+f(x)×y=g(x)\dfrac{{dy}}{{dx}} + f\left( x \right) \times y = g\left( x \right).
So, we get,
dydx=ysinxy2cosx\dfrac{{dy}}{{dx}} = \dfrac{{y\sin x - {y^2}}}{{\cos x}}
So, this cannot be in the form of dydx+f(x)×y=g(x)\dfrac{{dy}}{{dx}} + f\left( x \right) \times y = g\left( x \right). If we divide by y2{y^2} both side,
1y2dydx=1ysinxcosx1cosx\dfrac{1}{{{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{1}{y}\dfrac{{\sin x}}{{\cos x}} - \dfrac{1}{{\cos x}}
1y2dydx1y×tanx=secx\dfrac{1}{{{y^2}}}\dfrac{{dy}}{{dx}} - \dfrac{1}{y} \times \tan x = - \sec x (1)
Now we can assume that 1y=t - \dfrac{1}{y} = t
Upon differentiation with respect to xx, we get
1y2dydx=dtdx\dfrac{1}{{{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}}
Now we can replace, 1y2dydx=dtdx\dfrac{1}{{{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} and 1y=t - \dfrac{1}{y} = t in equation (1)
So, we get
dtdx+ttanx=secx\dfrac{{dt}}{{dx}} + t\tan x = - \sec x
So we get in the form of dydx+f(x)×y=g(x)\dfrac{{dy}}{{dx}} + f\left( x \right) \times y = g\left( x \right).
So, now we need to find the integrating factor.
IF=ef(x)dx Here, f(x)=tanx IF=etanxdx=eloge(secx)=secx so, here we got IF=secx  IF = {e^{\int {f\left( x \right)dx} }} \\\ {\text{Here, }}f\left( x \right) = \tan x \\\ IF = {e^{\int {\tan xdx} }} = {e^{{{\log }_e}\left( {\sec x} \right)}} = \sec x \\\ {\text{so, here we got }}IF = \sec x \\\
Now the general equation will become
(IF)y=(IF)g(x)dx+c\left( {IF} \right)y = \int {\left( {IF} \right)g\left( x \right)dx + c}
Here replace yy by tt
(secx)t=secx×secxdx+c (secx)t=sec2xdx+c   \left( {\sec x} \right)t = \int { - \sec x \times \sec xdx} + c \\\ \left( {\sec x} \right)t = - \int {{{\sec }^2}xdx} + c \\\ \\\
We know that sec2xdx=tanx\int {{{\sec }^2}xdx} = \tan x
So,
t(secx)=tanx+ct\left( {\sec x} \right) = - \tan x + c
And we know 1y=t - \dfrac{1}{y} = t
secxy=tanx+c secx=(tanx+c)y  \dfrac{{\sec x}}{y} = \tan x + c \\\ \sec x = \left( {\tan x + c} \right)y \\\

So, option D is correct.

Note: Here we can use alternative method, we are given (cosx)dy=y(sinxy)dx\left( {\cos x} \right)dy = y\left( {\sin x - y} \right)dx
cosxdyysinxdx=y2dx\Rightarrow \cos xdy - y\sin xdx = - {y^2}dx
If we differentiate d(ycosx)=cosxdyysinxdxd\left( {y\cos x} \right) = \cos xdy - y\sin xdx
So, d(ycosx)=y2dxd\left( {y\cos x} \right) = - {y^2}dx
Now multiplying and dividing by cos2x{\cos ^2}x
d(ycosx)=y2cos2xcos2xdx d(ycosx)y2cos2x=dxcos2x  \Rightarrow d\left( {y\cos x} \right) = \dfrac{{ - {y^2}{{\cos }^2}x}}{{{{\cos }^2}x}}dx \\\ \dfrac{{d\left( {y\cos x} \right)}}{{{y^2}{{\cos }^2}x}} = - \dfrac{{dx}}{{{{\cos }^2}x}} \\\
Integrating both sides,
1(ycosx)2d(ycosx)=sec2xdx \-1ycosx=tanx+c secx=(tanx+c)y  \int {\dfrac{1}{{{{\left( {y\cos x} \right)}^2}}}d\left( {y\cos x} \right)} = - \int {{{\sec }^2}xdx} \\\ \- \dfrac{1}{{y\cos x}} = - \tan x + c \\\ \sec x = \left( {\tan x + c} \right)y \\\