Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

Solution of the differential equation x+x33!+x55!+1+x22!+x44!+=dxdydx+dy\frac{x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots}{1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots}=\frac{dx-dy}{dx+dy} is

A

2ye2x=Ce2x+12ye^{2x}=C\cdot e^{2x}+1

B

2ye2x=Ce2x12ye^{2x}=C\cdot e^{2x}-1

C

ye2x=Ce2x+2ye^{2x}=C\cdot e^{2x}+2

D

none of these

Answer

2ye2x=Ce2x12ye^{2x}=C\cdot e^{2x}-1

Explanation

Solution

Given equation can be rewritten as 12(exex)12(ex+ex)=dxdydx+dy\frac{\frac{1}{2}\left(e^{x}-e^{-x}\right)}{\frac{1}{2}\left(e^{x}+e^{-x}\right)}=\frac{dx-dy}{dx+dy} Applying componendo and dividendo, we get dydx=exex=e2x\frac{dy}{dx}=\frac{e^{-x}}{e^{x}}=e^{-2x} 2y=e2x+C\Rightarrow 2y=-e^{-2x}+C\quad (Integrating) 2ye2x=Ce2x1\Rightarrow 2ye^{2x}=C\cdot e^{2x}-1