Solveeit Logo

Question

Mathematics Question on Differential equations

Solution of the differential equation cosxdy=y(sinxy)dx,0<x<π2cos\, x\, dy = y(sin\, x - y) dx,\, 0 < x < \frac{\pi}{2} is

A

ysecx=tanx+cy\, sec\, x = tan\, x + c

B

ytanx=secx+cy \,tan \,x = sec \,x + c

C

tanx=(secx+c)ytan\, x = (sec \,x + c)y

D

secx=(tanx+c)ysec \,x = (tan \,x + c)y

Answer

secx=(tanx+c)ysec \,x = (tan \,x + c)y

Explanation

Solution

cosxdy=y(sinxy)dxcos\, x \,dy = y\left(sin \,x - y\right) \,dx dydx=ytanxy2secx\frac{dy}{dx} = y\, tan\,x \,y^{2}\, sec \,x 1y2dydx1ytanx=secx\frac{1}{y^{2}} \frac{dy}{dx} - \frac{1}{y} \,tan\, x = -sec \,x Let 1y=t\frac{1}{y} = t 1y2dydx=dtdx-\frac{1}{y^{2}}\frac{dy}{dx}= \frac{dt}{dx} dydxttanx=secxdtdx+(tanx)t=secx.-\frac{dy}{dx}- t \,tan\, x = -sec \,x \Rightarrow \frac{dt}{dx} + \left(tan\, x\right) \,t = sec\, x. I.F.=etanxdx=secxI.F. = e^{\int \,tan \,x\, dx} = sec\, x Solution is t(I.F)=(I.F)secxdxt\left(I.F\right) = \int \left(I.F\right)\, sec\, x \,dx 1ysecx=tanx+c\frac{1}{y} sec \,x = tan \,x + c