Question
Question: Solution of inequality \(\log_{\log_{2}\left( \frac{x}{2} \right)}{}\) (x<sup>2</sup> – 10x + 22) \...
Solution of inequality
loglog2(2x) (x2 – 10x + 22) > 0 is –
A
(– ¥, 3)
B
(5 –3, 3) È (5 +3, 7)
C
(0, 5 –3) È (3, 4)
D
(7, ¥)
Answer
(7, ¥)
Explanation
Solution
Inequality loglog2(2x) (x2 – 10x + 22) > 0 …(1)
L.H.S. is valid if :
x2 – 10x + 22 > 0 2x>0
x < 5 – 3 or x > 5 + 3 x > 0
eqn (1) will be solved for two cases
(1) 0 < log2(2x) < 1
̃ 1 < 2x < 2 = ̃ 2 < x < 4
loglog2(2x) (x2 – 10x + 22) > 0
x2 – 10x + 22 < 1
x2 – 10x + 21 < 0 ̃ 3 < x < 7
The common solution 3 < x < 4
(2) log2(2x) > 1 ̃ 2x > 2
x > 4
loglog2(2x) (x2 – 10x + 22) > 0
x2 – 10x + 22 > 1 ̃ x2 – 10x + 21 > 0
x < 3 or x > 7 common soln x > 7
two cases x Î (3, 4) È (7, ¥)
Now common solution with initial values
x Î (7, ¥)