Solveeit Logo

Question

Question: Solution of inequality \(\log_{\log_{2}\left( \frac{x}{2} \right)}{}\) (x<sup>2</sup> – 10x + 22) \...

Solution of inequality

loglog2(x2)\log_{\log_{2}\left( \frac{x}{2} \right)}{} (x2 – 10x + 22) > 0 is –

A

(– ¥, 3)

B

(5 –3\sqrt{3}, 3) È (5 +3\sqrt{3}, 7)

C

(0, 5 –3\sqrt{3}) È (3, 4)

D

(7, ¥)

Answer

(7, ¥)

Explanation

Solution

Inequality loglog2(x2)\log_{\log_{2}\left( \frac{x}{2} \right)}{} (x2 – 10x + 22) > 0 …(1)

L.H.S. is valid if :

x2 – 10x + 22 > 0 x2>0\frac{x}{2} > 0

x < 5 – 3\sqrt{3} or x > 5 + 3\sqrt{3} x > 0

eqn (1) will be solved for two cases

(1) 0 < log2(x2)\left( \frac{x}{2} \right) < 1

̃ 1 < x2\frac{x}{2} < 2 = ̃ 2 < x < 4

loglog2(x2)\log_{\log_{2}\left( \frac{x}{2} \right)}{} (x2 – 10x + 22) > 0

x2 – 10x + 22 < 1

x2 – 10x + 21 < 0 ̃ 3 < x < 7

The common solution 3 < x < 4

(2) log2(x2)\left( \frac{x}{2} \right) > 1 ̃ x2\frac{x}{2} > 2

x > 4

loglog2(x2)\log_{\log_{2}\left( \frac{x}{2} \right)}{} (x2 – 10x + 22) > 0

x2 – 10x + 22 > 1 ̃ x2 – 10x + 21 > 0

x < 3 or x > 7 common soln x > 7

two cases x Î (3, 4) È (7, ¥)

Now common solution with initial values

x Î (7, ¥)