Solveeit Logo

Question

Question: Solution of \(\frac{dy}{dx} - y\tan x = - y^{2}\sec x\) is...

Solution of dydxytanx=y2secx\frac{dy}{dx} - y\tan x = - y^{2}\sec x is

A

ysec x = tan x + c

B

secxy=tanx+c\frac{\sec x}{y} = \tan x + c

C

ycosx = tan x + c

D

None of these

Answer

secxy=tanx+c\frac{\sec x}{y} = \tan x + c

Explanation

Solution

Re-writing the given equation,

y2dydxy1tanx=secxy^{- 2}\frac{dy}{dx} - y^{- 1}\tan x = - \sec x

Let y1=vy^{- 1} = vy2dydx=dvdx- y^{- 2}\frac{dy}{dx} = \frac{dv}{dx}

dvdx+tanx.v=secx\frac{dv}{dx} + \tan x.v = \sec x ……..(i)

I.F.=etanx=elnsecx=secx= e^{\int_{}^{}{\tan x}} = e^{{lnsec}x} = \sec x

Multiplying (i) by sec x and integrating,

vsecx=sec2xdx=tanx+cv\sec x = \int_{}^{}{\sec^{2}xdx} = \tan x + c

secxy=tanx+c\frac{\sec x}{y} = \tan x + c