Question
Mathematics Question on Order and Degree of Differential Equation
Solution of xdy−ydxxdx+ydy=x2+y2a2−x2−y2 is
A
x2+y2=asin(C+tan−1xy)
B
x2+y2=acos(C+tan−1xy)
C
x2+y2=atan(C+tan−1xy)
D
none of these
Answer
x2+y2=asin(C+tan−1xy)
Explanation
Solution
Put x=rcosθ,y=rsinθ ⇒x2+y2=r2 tanθ=xy ∴d(x2+y2)=d(r2) ⇒xdx+ydy=rdr and d(xy)=d(tanθ) ⇒x2xdy−ydx=sec2θdθ ∴ given diff. eqn. becomes r2cos2θ.sec2θdθrdr=r2a2−r2 ⇒r1dθdr=ra2−r2 ⇒dθdr=a2−r2 ⇒∫a2−r2dx=∫dθ+C ⇒sin−1ar=θ+C ⇒ar=sin(θ+C) ⇒r=asin(θ+C) ⇒x2+y2=asin[C+tan−1xy]