Solveeit Logo

Question

Mathematics Question on Order and Degree of Differential Equation

Solution of xdx+ydyxdyydx=a2x2y2x2+y2\frac{xdx+ydy}{xdy-ydx}=\frac{\sqrt{a^2-x^2-y^2}}{x^2+y^2} is

A

x2+y2=asin(C+tan1yx)\sqrt{x^2+y^2}=a\,\sin\left(C+ \tan^{-1}\frac{y}{x}\right)

B

x2+y2=acos(C+tan1yx)\sqrt{x^2+y^2}=a\,\cos\left(C+ \tan^{-1}\frac{y}{x}\right)

C

x2+y2=atan(C+tan1yx)\sqrt{x^2+y^2}=a\,\tan\left(C+ \tan^{-1}\frac{y}{x}\right)

D

none of these

Answer

x2+y2=asin(C+tan1yx)\sqrt{x^2+y^2}=a\,\sin\left(C+ \tan^{-1}\frac{y}{x}\right)

Explanation

Solution

Put x=rcosθ,y=rsinθx = r\,cos\,\theta, y = r\,sin\,\theta x2+y2=r2\Rightarrow x^{2} + y^{2} = r^{2} tanθ=yxtan\,\theta=\frac{y}{x} d(x2+y2)=d(r2)\therefore d\left(x^{2}+y^{2}\right)=d\left(r^{2}\right) xdx+ydy=rdr\Rightarrow x\,dx + y\,dy = rdr and d(yx)=d(tanθ)d\,\left(\frac{y}{x}\right) = d\,\left(tan\,\theta\right) xdyydxx2=sec2θdθ\Rightarrow \frac{xdy-ydx}{x^{2}} = sec^{2}\,\theta\,d\,\theta \therefore given diff. eqn. becomes rdrr2cos2θ.sec2θdθ=a2r2r2\frac{rdr}{r^{2}\,cos^{2}\,\theta. sec^{2}\,\theta\,d\theta} = \frac{\sqrt{a^{2}-r^{2}}}{r^{2}} 1rdrdθ=a2r2r\Rightarrow \frac{1}{r} \frac{dr}{d\theta} = \frac{\sqrt{a^{2}-r^{2}}}{r} drdθ=a2r2\Rightarrow \frac{dr}{d\theta } = \sqrt{a^{2}-r^{2}} dxa2r2=dθ+C\Rightarrow \int \frac{dx}{ \sqrt{a^{2}-r^{2}}} = \int d\theta + C sin1ra=θ+C\Rightarrow sin^{-1} \frac{r}{a} = \theta+C ra=sin(θ+C)\Rightarrow \frac{r}{a} = sin \left(\theta +C\right) r=asin(θ+C)\Rightarrow r = a\,sin \left(\theta +C\right) x2+y2=asin[C+tan1yx]\Rightarrow \sqrt{x^{2}+y^{2}} = a\,sin\left[C+tan^{-1} \frac{y}{x}\right]