Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

Solution of dydx+ysecx=tanx\frac{dy}{dx}+y\,\sec\,x=\tan\,x is

A

y=secx+tanxx+Cy = \sec x + \tan x - x + C

B

y(secx+tanx)=secx+tanxx+Cy\, (\sec x + \tan x) = \sec x + \tan x - x + C

C

y(secx+tanx)=secx+tanx+x+Cy\, (\sec x + \tan x) = \sec x + \tan x + x + C

D

none of these

Answer

y(secx+tanx)=secx+tanxx+Cy\, (\sec x + \tan x) = \sec x + \tan x - x + C

Explanation

Solution

dydx+ysecx=tanx\frac{dy}{dx}+y\,sec\,x = tan\,x. P=secx,Q=tanxP= sec \,x, Q = tan \,x ePdx=elog(secx+tanx)=secx+tanxe^{\int Pdx} = e^{log\left(sec\,x+tan\,x\right)}= sec\,x+tan\,x \therefore Sol. is y(secx+tanx)=(secx+tanx+tan2x)dxy \left(sec\,x+tan\,x\right) = \int \left(sec\,x+tan\,x+tan^{2}\,x\right)dx =secxtanxdx+sec2xdxdx= \int sec\,x\,tan\,xdx+\int sec^{2}\,xdx-\int dx =secx+tanxx+C= sec\,x+tan\,x-x+C