Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

Solution of dydxy=1\frac{dy}{dx}-y=1, y(0)=1y\left(0\right)=1 is given by

A

xy=exxy = - e^x

B

xy=exxy = - e^{-x}

C

xy=1xy = - 1

D

y=2ex1y = 2 \,e^x - 1

Answer

y=2ex1y = 2 \,e^x - 1

Explanation

Solution

dydxy=1\frac{dy}{dx}-y=1 dydx=1+y\Rightarrow \frac{dy}{dx}=1+y dy1+y=dx\Rightarrow \frac{dy}{1+y}=dx On integrating, we get log(1+y)=x+clog\left( 1 + y\right) = x + c Now, y(0)=1y\left(0\right)=1 log2=c\Rightarrow log2=c log(1+y)=x+log2\therefore log\left(1 + y\right) = x + log2 1+y2=ex\Rightarrow \frac{1+y}{2}=e^{x} 1+y=2ex\Rightarrow 1+y=2e^{x} y=2ex1\Rightarrow y=2e^{x}-1