Solveeit Logo

Question

Mathematics Question on Order and Degree of Differential Equation

Solution of dydx=2x6y+7x3y+4\frac{dy}{dx} = \frac{2x - 6y + 7}{x - 3y + 4} is

A

2xy+15log(5x15y+17)=C 2x - y + \frac{1}{5}\log (5x - 15y + 17) = C

B

2x6y+15log(5x15y+17)=C 2x - 6y + \frac{1}{5}\log (5x - 15y + 17) = C

C

2x+y+15log(5x15y+17)=C 2x + y + \frac{1}{5}\log (5x - 15y + 17) = C

D

none of these.

Answer

2xy+15log(5x15y+17)=C 2x - y + \frac{1}{5}\log (5x - 15y + 17) = C

Explanation

Solution

Put x3y=zx - 3y = z 13dydx=dzdx\therefore 1-3\frac{dy}{dx} = \frac{dz}{dx} 13[1dzdx]=2z+7z+4\therefore \frac{1}{3}\left[1-\frac{dz}{dx}\right] = \frac{2z+7}{z+4} 1dzdx=6z+21z+4\Rightarrow 1-\frac{dz}{dx} = \frac{6z+21}{z+4} dzdx=16z+21z+4\Rightarrow \frac{dz}{dx} = 1- \frac{6z+21}{z+4} =z+46z21z+4=5z17z+4= \frac{z+4-6z-21}{z+4} = \frac{-5z-17}{z+4} z+45z+17dz+dx=0\therefore \frac{z+4}{5z+17}dz+dx=0 5z+205z+17dz+5dx=0\Rightarrow \frac{5z+20}{5z+17}dz+5dx=0 (1+35z+17)dz+5dx=0\Rightarrow \left(1+\frac{3}{5z+17}\right)dz+5dx=0 z+35log(5z+17)+5x=c\Rightarrow z+\frac{3}{5}log \left(5z+17\right)+5x=c x3y+35log(5x15y+117)+5x=C1\Rightarrow x-3y+\frac{3}{5} log \left(5x - 15y + 117\right) + 5x = C_{1} 6x3y+35log(5x15y+17)=C1\Rightarrow 6x - 3y + \frac{3}{5} log \left(5x - 15y + 17\right) = C_{1} 2xy+15log(5x15y+17)=C\Rightarrow 2x - y + \frac{1}{5} log \left(5x - 15y + 17\right) = C