Solveeit Logo

Question

Mathematics Question on Order and Degree of Differential Equation

Solution of d2ydx2=xex\frac {d^2y} {dx^2}=x\,e^x is y

A

ex(x2)+C1x+C2e^x(x - 2) + C_1 x + C_2

B

ex(x1)+C1x2+C2xe^x(x - 1) + C_1 x^2 + C_2x

C

ex(x+1)+C1x2+C2xe^x(x + 1) + C_1 x^2 + C_2x

D

ex(x2)C1x+C2e^x(x - 2) - C_1 x + C_2

Answer

ex(x2)+C1x+C2e^x(x - 2) + C_1 x + C_2

Explanation

Solution

We have, d2ydx2=xex\frac{d^{2}y}{dx^{2}} = xe^{x} Integrating (i)\left(i\right) by parts, we get dydx=xexexdx+C1=xexex+C1\frac{dy}{dx} = xe^{x} - \int e^{x}\,dx+C_{1} = xe^{x} - e^{x} + C_{1} Again integrating by parts, we get y=xexexex+C1x+C2y = xe^{x} - e^{x} - e^{x} + C_{1}x + C_{2} y=xex2ex+C1x+C2\Rightarrow y = xe^{x} - 2e^{x} + C_{1}x+C_{2} y=ex(x2)+C1x+C2\Rightarrow y = e^{x} \left(x - 2\right) + C_{1}x + C_{2}.