Solveeit Logo

Question

Mathematics Question on linear inequalities in one variable

Solution of 2x33x53\frac{2x - 3}{3x - 5} \ge 3 is

A

[1,127)[1,\, \frac{12}{7})

B

(53,127](\frac{5}{3},\, \frac{12}{7}]

C

(,53)\left(-\infty,\, \frac{5}{3}\right)

D

[127,)\left[\frac{12}{7},\, \infty\right)

Answer

(53,127](\frac{5}{3},\, \frac{12}{7}]

Explanation

Solution

We have 2x33x53\frac{2x - 3}{3x - 5} \ge 3 or 2x33x530\quad \frac{2x-3}{3x-5} - 3 \ge 0 or 7x123x50\frac{7x - 12}{3x - 5} \le 0 \Rightarrow\quad {7x1207x - 12 \le 0 and 3x5>03x - 5 > 0} or \quad {7x1207x - 12 \ge 0 and 3x5<03x - 5 < 0} \Rightarrow\quad {x127x \le \frac{12}{7} and x>53x > \frac{5}{3}} or {x127x \ge \frac{12}{7} and x<53x < \frac{5}{3}} x(53,127]\Rightarrow \quad x\in (\frac{5}{3},\, \frac{12}{7}]