Solveeit Logo

Question

Mathematics Question on Order and Degree of Differential Equation

Solution of edydx=xe^\frac {dy}{dx} = x when x=1x = 1 and y=0y = 0 is

A

y=x(logx1)+4y = x (logx - 1) + 4

B

y=x(logx1)+3y = x (logx - 1) + 3

C

y=x(logx+1)+1y = x(logx+ 1)+ 1

D

y=x(logx1)+1y = x(logx - 1)+ 1

Answer

y=x(logx1)+1y = x(logx - 1)+ 1

Explanation

Solution

Given, edy/dx=xe^{dy/dx}=x
Taking logarithm on both sides, we get
logedydx=logxlog \, e^{dy\,dx}=log\,x
dydx=\frac{dy}{dx}= = log ,x
dy=logxdxdy = log\, x\, dx
On integrating , we get
dy=logxdx\int \,dy=\int\, log \,x \,dx
=logx1dx=[ddxlogx1dx]dx= log \,x \int \,1 \,dx=\int\left[\frac{d}{dx}\,log\,x \int 1\,dx\right]dx
=xlogx1x×xdx=x\, log \,x-\int \frac{1}{x}\times x\,dx
=xlogxdx=x\, log \,x-\int \,dx
=xlogxx= x \,log \,x - x
y=x(logxl)+C(i)y = x (log x - l) + C \,\,\,\,\,\dots(i)
when x=1x = 1 and y=0y = 0
0=1(log11)+C\Rightarrow 0 = 1 (log 1 - 1) + C
0=(01)+C\Rightarrow 0 = (0 - 1)+ C
C=1\Rightarrow C = 1
\therefore E (i) becomes
y=x(logx1)+1y = x (log \,x - 1) + 1