Solveeit Logo

Question

Question: Solution of differential equation t = 1 + (ty) \(\frac{dy}{dt}\) + ![](https://cdn.pureessence.tech/...

Solution of differential equation t = 1 + (ty) dydt\frac{dy}{dt} + (dydt)2\left( \frac{dy}{dt} \right)^{2} + ...  is –

A

y = ±(logt)2+c\sqrt{(\log t)^{2} + c}

B

ty = ty + c

C

y = log t + c

D

y = (log t)2 + c

Answer

y = ±(logt)2+c\sqrt{(\log t)^{2} + c}

Explanation

Solution

The given equation is

t = 1 + (ty) (dydt)\left( \frac{dy}{dt} \right) + (ty)22!\frac{(ty)^{2}}{2!} (dydt)2\left( \frac{dy}{dt} \right)^{2}+ ...  Ž t = ety(dydt)e^{ty\left( \frac{dy}{dt} \right)} Ž log t = ty dydt\frac{dy}{dt}

Ž y dy = logtt\frac{\log t}{t} dt

On integration

y22\frac{y^{2}}{2}= (logt)22\frac{(\log t)^{2}}{2} + k

Ž y = ± (logt)2+2k\sqrt{(\log t)^{2} + 2k}

Ž y = ± (logt)2+c\sqrt{(\log t)^{2} + c}