Solveeit Logo

Question

Question: Solution of differential equation \(\frac{dt}{dx} = \frac{t\left( \frac{d}{dx}(g(x)) \right) - t^{2}...

Solution of differential equation dtdx=t(ddx(g(x)))t2g(x)\frac{dt}{dx} = \frac{t\left( \frac{d}{dx}(g(x)) \right) - t^{2}}{g(x)}is –

A

t = g(x)+cx\frac{g(x) + c}{x}

B

t = g(x)x\frac{g(x)}{x} + c

C

t = g(x)x+c\frac{g(x)}{x + c}

D

t = g(x) + x + c

Answer

t = g(x)x+c\frac{g(x)}{x + c}

Explanation

Solution

dtdx\frac{dt}{dx} – t g(x)g(x)\frac{g'(x)}{g(x)} = – t2g(x)\frac{t^{2}}{g(x)}

Ž – 1t2\frac{1}{t^{2}} dtdx\frac{dt}{dx} + g(x)g(x)\frac{g'(x)}{g(x)} = 1g(x)\frac{1}{g(x)}... (1)

Let z = 1t\frac{1}{t} Ž – 1t2\frac{1}{t^{2}} dtdx\frac{dt}{dx} = dzdx\frac{dz}{dx}From (i)

dzdx\frac{dz}{dx} + g(x)g(x)\frac{g'(x)}{g(x)} z = 1g(x)\frac{1}{g(x)}

On comparing with dzdx\frac{dz}{dx} + Pz = Q, we get

P = g(x)g(x)\frac{g'(x)}{g(x)}, Q =1g(x)\frac{1}{g(x)}

\ IF = eg(x)g(x)dxe^{\int_{}^{}{\frac{g'(x)}{g(x)}dx}} = e log [g(x)] = g(x)

6tThus complete solution is

z . g(x) = g(x)\int_{}^{}{g(x)}. 1g(x)\frac{1}{g(x)} dx + c Ž 1t\frac{1}{t}g(x) = x + c Ž g(x)x+c\frac{g(x)}{x + c} = t