Solveeit Logo

Question

Question: Solution of differential equation $2xy \frac{dy}{dx} = x^2 + 3y^2$ is...

Solution of differential equation 2xydydx=x2+3y22xy \frac{dy}{dx} = x^2 + 3y^2 is

A

x3+y2=px2x^3 + y^2 = px^2

B

x22+y3x=y2+p\frac{x^2}{2} + \frac{y^3}{x} = y^2 + p

C

x2+y3=px2x^2 + y^3 = px^2

D

x2+y2=px3x^2 + y^2 = px^3

Answer

x2+y2=px3x^2 + y^2 = px^3

Explanation

Solution

The given differential equation is 2xydydx=x2+3y22xy \frac{dy}{dx} = x^2 + 3y^2.

Rearrange it to dydx=x2+3y22xy\frac{dy}{dx} = \frac{x^2 + 3y^2}{2xy}.

This is a homogeneous differential equation as the numerator and denominator are homogeneous functions of degree 2.

Substitute y=vxy = vx, so dydx=v+xdvdx\frac{dy}{dx} = v + x \frac{dv}{dx}.

The equation becomes v+xdvdx=x2+3(vx)22x(vx)=x2(1+3v2)2vx2=1+3v22vv + x \frac{dv}{dx} = \frac{x^2 + 3(vx)^2}{2x(vx)} = \frac{x^2(1+3v^2)}{2vx^2} = \frac{1+3v^2}{2v}.

xdvdx=1+3v22vv=1+3v22v22v=1+v22vx \frac{dv}{dx} = \frac{1+3v^2}{2v} - v = \frac{1+3v^2-2v^2}{2v} = \frac{1+v^2}{2v}.

Separate variables: 2v1+v2dv=1xdx\frac{2v}{1+v^2} dv = \frac{1}{x} dx.

Integrate both sides: 2v1+v2dv=1xdx\int \frac{2v}{1+v^2} dv = \int \frac{1}{x} dx.

ln1+v2=lnx+lnp\ln|1+v^2| = \ln|x| + \ln|p| (where pp is the integration constant).

ln(1+v2)=lnpx\ln(1+v^2) = \ln|px| (since 1+v2>01+v^2 > 0).

1+v2=px1+v^2 = px.

Substitute back v=yxv = \frac{y}{x}:

1+(yx)2=px1 + \left(\frac{y}{x}\right)^2 = px

1+y2x2=px1 + \frac{y^2}{x^2} = px

Multiply by x2x^2:

x2+y2=px3x^2 + y^2 = px^3.