Solveeit Logo

Question

Mathematics Question on Order and Degree of Differential Equation

Solution of diff. equation (6x+2y10)dydx=2x+9y20(6x + 2y - 10)\frac{dy}{dx}=2x+9y-20 is

A

(y+2x)2=C(x2y+5)(y + 2x)^2 = C (x - 2y + 5)

B

(y+2x)3=C(x+2y5)(y + 2x)^3 = C (x + 2y - 5)

C

(y2x)2=C(x+2y5)(y - 2x)^2 = C (x + 2y - 5)

D

none of these

Answer

(y2x)2=C(x+2y5)(y - 2x)^2 = C (x + 2y - 5)

Explanation

Solution

dydx=2x+9y206x+2y10\frac{dy}{dx} = \frac{2x+9y-20}{6x+2y-10}. Put x=X+hx = X + h ; y=Y+ky = Y + k dYdX=2X+9Y6X+2Y\frac{dY}{dX} = \frac{2X+9Y}{6X+2Y} Where 2h+9k20=02h + 9k-20 = 0 6h+2k10=06h + 2k- 10 = 0 h50=k100=150\frac{h}{-50} = \frac{k}{-100} = \frac{1}{-50} h=1\therefore h = 1, k=2k = 2 Put Y=vXY = vX v+XdvdX=2+9v6+2vv+X \frac{dv}{dX} = \frac{2+9v}{6+2v} XdvdX=2+9v6v2v26+2v\therefore X \frac{dv}{dX} = \frac{2+9v-6v-2v^{2}}{6+2v} =2+3v2v26+2v= \frac{2+3v-2v^{2}}{6+2v} 6+2v2+3v2v2dv=dXX\frac{6+2v}{2+3v-2v^{2}}dv = \frac{dX}{X} [21+2v+22v]dv\Rightarrow \int \left[\frac{2}{1+2v}+\frac{2}{2-v}\right]dv =dXX+logC1= \int \frac{dX}{X} + log\,C_{1} log(1+2v)2log(2v)=logC1X\Rightarrow log \left(1 + 2 v\right) - 2 \,log \left(2 - v\right) = log \,C_{1}\, X log1+2v(2v)2=logC1X\Rightarrow log \frac{1+2v}{\left(2-v\right)^{2}} = log\,C_{1}\,X 1+2YX(2YX)=C1X\Rightarrow \frac{1+2 \frac{Y}{X}}{\left(2-\frac{Y}{X}\right) } = C_{1}\,X (X+2Y)X(2XY)2=C1X\Rightarrow \frac{\left(X+2Y\right)X}{\left(2X-Y\right)^{2}} = C_{1}\,X (X+2Y)=(2XY)2C1\Rightarrow \left(X + 2Y\right) = \left(2X - Y\right)^{2} C_{1} C(x+2y5)(2xy)2\Rightarrow C\left(x + 2y - 5\right) - \left(2x - y\right)^{2} (y2x)2=C(x+2y5)\Rightarrow \left(y - 2 x\right)^{2} = C \left(x+ 2y - 5\right)