Solveeit Logo

Question

Mathematics Question on inequalities

Solution of 0<3x+1<130 < \left|3x + 1\right| < \frac{1}{3} is

A

(49,29)\left(-\frac{4}{9},\,-\frac{2}{9}\right)

B

[49,29]\left[-\frac{4}{9},\,-\frac{2}{9}\right]

C

\left(-\frac{4}{9},\,-\frac{2}{9}\right) - \left\\{-\frac{1}{3}\right\\}

D

\left[-\frac{4}{9},\,-\frac{2}{9}\right] - \left\\{-\frac{1}{3}\right\\}

Answer

\left(-\frac{4}{9},\,-\frac{2}{9}\right) - \left\\{-\frac{1}{3}\right\\}

Explanation

Solution

Let us first solve 3x+1<32\left|3x + 1\right|< \frac{3}{2} 13<3x+1<1343<3x<23\Leftrightarrow -\frac{1}{3} < 3x + 1 < \frac{1}{3}\Leftrightarrow -\frac{4}{3} < 3x < -\frac{2}{3} 49<x<29\Leftrightarrow\quad -\frac{4}{9} < x < -\frac{2}{9}. Also, 0<3x+10 < |3x + 1| is satisfied by each xx except when 3x+1=03x + 1 = 0. i.e. x=13x = - \frac{1}{3}. \therefore\quad Solution is \left(-\frac{4}{9},\,-\frac{2}{9}\right) - \left\\{-\frac{1}{3}\right\\}.