Solveeit Logo

Question

Question: Solubility product constants of (\({{K}_{sp}}\)) of salts of the types \(MX\), \(M{{X}_{2}}\) and \(...

Solubility product constants of (Ksp{{K}_{sp}}) of salts of the types MXMX, MX2M{{X}_{2}} and M3X{{M}_{3}}X at temperature T are 4.0×1084.0\times {{10}^{-8}}, 3.2×10143.2\times {{10}^{-14}} and 2.7×10152.7\times {{10}^{-15}} respectively. Solubility (mol dm3d{{m}^{-3}}) of the salts at temperature T are in the order:
(A)- MX>MX2>M3XMX>M{{X}_{2}}>{{M}_{3}}X
(B)- M3X>MX2>MX{{M}_{3}}X>M{{X}_{2}}>MX
(C)- MX2>M3X>MXM{{X}_{2}}>{{M}_{3}}X>MX
(D)- MX>M3X>MX2MX>{{M}_{3}}X>M{{X}_{2}}

Explanation

Solution

Solubility product of a salt at any temperature is the product of the molar concentration of its ions where each concentration term is raised to the number of ions produced on dissociation of one molecule of the salt in saturated solution.
Solubility of a salt at any given temperature can be calculated from its solubility product. If salt of the typeMxNy{{M}_{x}}{{N}_{y}} dissociates in solution.
MxNyxMy+yNx{{M}_{x}}{{N}_{y}}\rightleftarrows x{{M}^{y-}}+y{{N}^{x-}}
Then, it solubility product, Ksp{{K}_{sp}} will be given as:Ksp=[My+]x[Nx]y{{K}_{sp}}={{\left[ {{M}^{y+}} \right]}^{x}}{{\left[ {{N}^{x-}} \right]}^{y}}

Complete answer:
To determine the order of solubility of the salts MXMX, MX2M{{X}_{2}} and M3X{{M}_{3}}X, let us first calculate the solubility of these salts one by one and then compare the values.
Solubility of salt of the type MXMX is calculated in the following steps:
Consider the dissociation of the salt MXMX in solution as:
MXM++X sss \begin{aligned} & MX\rightleftarrows {{M}^{+}}+{{X}^{-}} \\\ & s\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,s\,\,\,\,\,\,\,\,\,\,s \\\ \end{aligned}
We can write the solubility product constant for MXMX as: Ksp=[M+][X]{{K}_{sp}}=\left[ {{M}^{+}} \right]\left[ {{X}^{-}} \right].
Now the concentration of M+{{M}^{+}} and X{{X}^{-}} (in mol dm3d{{m}^{-3}}) ions produced on dissociation is equal to the amount of salt that is dissolve. For salt of the type MXMX, [M+]=[X]\left[ {{M}^{+}} \right]=\left[ {{X}^{-}} \right]. $$$$
Let [M+]=[X]=s\left[ {{M}^{+}} \right]=\left[ {{X}^{-}} \right]=s. Here, ss represents the solubility of the ions produced on dissociation of MXMX in solution. Then, the expression for Ksp{{K}_{sp}} becomes:
Ksp=[M+][X]=s×s=s2{{K}_{sp}}=\left[ {{M}^{+}} \right]\left[ {{X}^{-}} \right]=s\times s={{s}^{2}}
Given solubility product of the salt MXMX, Ksp=4.0×108{{K}_{sp}}=4.0\times {{10}^{-8}}.
Substituting the value of Ksp=4.0×108{{K}_{sp}}=4.0\times {{10}^{-8}} in the above equation of Ksp{{K}_{sp}} and solving for ss, we get
Ksp=s2=4.0×108 s2=4.0×108 \begin{aligned} & {{K}_{sp}}={{s}^{2}}=4.0\times {{10}^{-8}} \\\ & \Rightarrow {{s}^{2}}=4.0\times {{10}^{-8}} \\\ \end{aligned}
Taking the square on both sides, we get
s2=4.0×108 s2=(2.0×104)2 s=2.0×104 \begin{aligned} & \sqrt{{{s}^{2}}}=\sqrt{4.0\times {{10}^{-8}}} \\\ & \sqrt{{{s}^{2}}}=\sqrt{{{(2.0\times {{10}^{-4}})}^{2}}} \\\ & s=2.0\times {{10}^{-4}} \\\ \end{aligned}
Therefore, the solubility of salt of the type MXMX is 2.0×104moldm32.0\times {{10}^{-4}}mol\,d{{m}^{-3}}

Similarly, the solubility of salt of the type MX2M{{X}_{2}} can be calculated from its solubility product constant.
MX2M2++2X ss2s \begin{aligned} & M{{X}_{2}}\rightleftarrows {{M}^{2+}}+2{{X}^{-}} \\\ & s\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,s\,\,\,\,\,\,\,\,\,\,\,\,2s \\\ \end{aligned}
Here, solubility product, Ksp{{K}_{sp}} will be written as : Ksp=[M2+][X]2=s×(2s)2=4s3{{K}_{sp}}=\left[ {{M}^{2+}} \right]{{\left[ {{X}^{-}} \right]}^{2}}=s\times {{(2s)}^{2}}=4{{s}^{3}}
Given, solubility product of the salt MX2M{{X}_{2}}, Ksp=3.2×1014{{K}_{sp}}=3.2\times {{10}^{-14}}.
Taking the value of Ksp{{K}_{sp}} to be 3.2×10143.2\times {{10}^{-14}} in the above equation, we obtain
Ksp=4s3=3.2×1014 4s3=3.2×1014 \begin{aligned} & {{K}_{sp}}=4{{s}^{3}}=3.2\times {{10}^{-14}} \\\ & \Rightarrow 4{{s}^{3}}=3.2\times {{10}^{-14}} \\\ \end{aligned}
Dividing both sides by 4, we get
4s34=3.2×1014s34 s3=0.8×1014=8×1015 \begin{aligned} & \dfrac{4{{s}^{3}}}{4}=\dfrac{3.2\times {{10}^{-14}}{{s}^{3}}}{4} \\\ & {{s}^{3}}=0.8\times {{10}^{-14}}=8\times {{10}^{-15}} \\\ \end{aligned}
Taking cube root on both sides and then calculating the value of ss as follows:
s33=8×10153 s33=(2×105)33 s=2×105 \begin{aligned} & \sqrt[3]{{{s}^{3}}}=\sqrt[3]{8\times {{10}^{-15}}} \\\ & \sqrt[3]{{{s}^{3}}}=\sqrt[3]{{{(2\times {{10}^{-5}})}^{3}}} \\\ & s=2\times {{10}^{-5}} \\\ \end{aligned}
The solubility of salt of the type MX2M{{X}_{2}} comes out to be 2.0×105moldm32.0\times {{10}^{-5}}mol\,d{{m}^{-3}} or 0.2×104moldm30.2\times {{10}^{-4}}mol\,d{{m}^{-3}}.

Now, let us finally calculate the solubility of salt of the type M3X{{M}_{3}}X.
M3X3M++X3 s3ss \begin{aligned} & {{M}_{3}}X\rightleftarrows 3{{M}^{+}}+{{X}^{3-}} \\\ & s\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3s\,\,\,\,\,\,\,\,\,\,s \\\ \end{aligned}
Solubility constant will be given as: Ksp=[M+]3[X]=(3s)3×s=27s4{{K}_{sp}}={{\left[ {{M}^{+}} \right]}^{3}}\left[ {{X}^{-}} \right]={{(3s)}^{3}}\times s=27{{s}^{4}}
Given value of the Ksp{{K}_{sp}} for M3X{{M}_{3}}X is 2.7×10152.7\times {{10}^{-15}}.
Substituting Ksp=2.7×1015{{K}_{sp}}=2.7\times {{10}^{-15}} and solving, we get
Ksp=27s4=2.7×1015 27s4=2.7×1015 \begin{aligned} & {{K}_{sp}}=27{{s}^{4}}=2.7\times {{10}^{-15}} \\\ & \Rightarrow 27{{s}^{4}}=2.7\times {{10}^{-15}} \\\ \end{aligned}
On dividing both sides by 27, we can simply as:
s4=0.1×1015=1×1016  \begin{aligned} & {{s}^{4}}=0.1\times {{10}^{-15}}=1\times {{10}^{-16}} \\\ & \\\ \end{aligned}
Taking fourth root on both sides and then solving for ss, we obtain
s44=1×10164 s44=(1×104)44 s=1×104  \begin{aligned} & \sqrt[4]{{{s}^{4}}}=\sqrt[4]{1\times {{10}^{16}}} \\\ & \sqrt[4]{{{s}^{4}}}=\sqrt[4]{{{(1\times {{10}^{-4}})}^{4}}} \\\ & s=1\times {{10}^{-4}} \\\ & \\\ \end{aligned}
Therefore, solubility of salt of the type M3X{{M}_{3}}X is 1×104moldm31\times {{10}^{-4}}mol\,d{{m}^{-3}}.
Salt
Solubility (moldm3mold{{m}^{-3}})
MXMX
2.0×104moldm32.0\times {{10}^{-4}}mol\,d{{m}^{-3}}
MX2M{{X}_{2}}
0.2×104moldm30.2\times {{10}^{-4}}mol\,d{{m}^{-3}}
M3X{{M}_{3}}X
1×104moldm31\times {{10}^{-4}}mol\,d{{m}^{-3}}
On comparing the values of solubility of the salts, it is clear that the order of solubility is:
MX>M3X>MX2MX>{{M}_{3}}X>M{{X}_{2}}

Hence, the correct option is (D).

Note: It is to be noted that the unit of solubility is the same as that of the molar concentration of ions in solution. Do not make any mistake while calculating. Solve for the solubility of each salt step by step to avoid errors in calculation.