Solveeit Logo

Question

Chemistry Question on Ionic Equilibrium In Solution

Solubility of calcium phosphate (molecular mass, MM) in water is WgW_g per 100 mL at 25C25^\circ C. Its solubility product at 25C25^\circ C will be approximately:

A

107(WM)310^7 \left( \frac{W}{M} \right)^3

B

107(WM)510^7 \left( \frac{W}{M} \right)^5

C

103(WM)510^3 \left( \frac{W}{M} \right)^5

D

105(WM)510^5 \left( \frac{W}{M} \right)^5

Answer

107(WM)510^7 \left( \frac{W}{M} \right)^5

Explanation

Solution

The chemical formula for calcium phosphate is Ca3_3(PO4_4)2_2.
The dissociation of calcium phosphate in water is represented as:
Ca3(PO4)2(s)    3Ca2+(aq)+2PO43(aq)\text{Ca}_3(\text{PO}_4)_2(s) \iff 3\text{Ca}^{2+}(aq) + 2\text{PO}_4^{3-}(aq)
Let the molar solubility of Ca3_3(PO4_4)2_2 be ss mol/L.
[Ca2+]=3s,[PO43]=2s[\text{Ca}^{2+}] = 3s, \quad [\text{PO}_4^{3-}] = 2s
The solubility product KspK_\text{sp} is given by:
Ksp=[Ca2+]3×[PO43]2=(3s)3×(2s)2=27s3×4s2=108s5K_\text{sp} = [\text{Ca}^{2+}]^3 \times [\text{PO}_4^{3-}]^2 = (3s)^3 \times (2s)^2 = 27s^3 \times 4s^2 = 108s^5
Converting mass solubility to molar solubility:
Given that the solubility in grams is WW g per 100 mL, the molar solubility ss is:
s=WM×10.1=10(WM)mol/Ls = \frac{W}{M} \times \frac{1}{0.1} = 10 \left( \frac{W}{M} \right) \text{mol/L}
Substituting this value into the expression for KspK_\text{sp}:
Ksp108(10(WM))5107(WM)5K_\text{sp} \approx 108 \left( 10 \left( \frac{W}{M} \right) \right)^5 \approx 10^7 \left( \frac{W}{M} \right)^5
Conclusion: The solubility product at 25^\circC is approximately 107(WM)510^7 \left( \frac{W}{M} \right)^5.