Solveeit Logo

Question

Chemistry Question on Equilibrium

Solubility of a M2SM_2S salt is 3.5×1063.5 \times 10^{–6} , then find out solubility product.

A

1.7×1061.7 \times10^{–6}

B

1.7×10161.7 \times 10^{–16}

C

1.7×10181.7\times 10^{–18}

D

1.7×10121.7 \times 10^{–12}

Answer

1.7×10161.7 \times 10^{–16}

Explanation

Solution

To find the solubility product (KspKsp) of a sparingly soluble salt like M2SM_2S (where M represents a metal cation and S represents a sulfide anion), you need to know the solubility (S) of the salt.

Given that the solubility of M2SM_2S is 3.5×1063.5 \times 10^{–6}, you can set up an equilibrium expression for the dissolution of the salt:

M2S(s)2M+(aq)+S²(aq)M_2S (s) ⇌ 2M^+ (aq) + S^{²-} (aq)

Now, you can write the expression for the solubility product (KspKsp) Using the concentrations of the ions involved:KspKsp = [M+]2[S2][M^+]^2[S^{2-}]
Since M2SM_2S dissociates to form 2M+2 M^+ ions and 1S21 S^{2-} ion: KspKsp = (2S)2(S)=4S3(2S)^{2}(S) = 4S^{3}

Now, substitute the solubility value (S=3.5×106S = 3.5 \times 10^{–6}) into the equation forKspKsp: KspKsp = 4(3.5×106)3=1.7×10164(3.5 \times 10^{–6})^3 = 1.7 \times 10^{^-16}
So, the solubility product (KspKsp) of M2SM_2S is indeed 1.7×10161.7 \times 10^{–16}.

So, The correct option is (B): 1.7×1016.1.7 \times 10^{–16}.