Solveeit Logo

Question

Question: $Smx+Smy=sin(x+y) \& |x|+|y|=1$ asfordered pireof $(x,y)=?$ $2sin(\frac{x+y}{2})col(\frac{x+y}{2})...

Smx+Smy=sin(x+y)&x+y=1Smx+Smy=sin(x+y) \& |x|+|y|=1

asfordered pireof (x,y)=?(x,y)=?

2sin(x+y2)col(x+y2)=2sin(x+y2)col(x+y2)2sin(\frac{x+y}{2})col(\frac{x+y}{2})=2sin(\frac{x+y}{2})col(\frac{x+y}{2})

2sin(x+y2)[Col(x+y2)Col(x+y2)]=02sin(\frac{x+y}{2})[Col(\frac{x+y}{2})-Col(\frac{x+y}{2})]=0

2sin(x+y2)x2sinx2siny2=02sin(\frac{x+y}{2})x2sin\frac{x}{2}sin\frac{y}{2}=0

sin(x+y2)=0sin(\frac{x+y}{2})=0 or sinx2=0sin\frac{x}{2}=0 or siny2=0sin\frac{y}{2}=0

x+y=0x+y=0 or x=0x=0 or y=0y=0

Answer

6

Explanation

Solution

The problem asks for the number of ordered pairs (x,y)(x,y) that satisfy two given equations:

  1. sinx+siny=sin(x+y)\sin x + \sin y = \sin(x+y)
  2. x+y=1|x| + |y| = 1

Step 1: Simplify the first equation

We use the sum-to-product formula for sinx+siny\sin x + \sin y and the double angle formula for sin(x+y)\sin(x+y).

sinx+siny=2sin(x+y2)cos(xy2)\sin x + \sin y = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)

sin(x+y)=2sin(x+y2)cos(x+y2)\sin(x+y) = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x+y}{2}\right)

Substitute these into the first equation:

2sin(x+y2)cos(xy2)=2sin(x+y2)cos(x+y2)2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x+y}{2}\right)

Rearrange the terms:

2sin(x+y2)[cos(xy2)cos(x+y2)]=02 \sin\left(\frac{x+y}{2}\right) \left[ \cos\left(\frac{x-y}{2}\right) - \cos\left(\frac{x+y}{2}\right) \right] = 0

Now, use the difference-to-product formula for cosines: cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right).

Let A=xy2A = \frac{x-y}{2} and B=x+y2B = \frac{x+y}{2}.

Then A+B2=xy2+x+y22=x2\frac{A+B}{2} = \frac{\frac{x-y}{2} + \frac{x+y}{2}}{2} = \frac{x}{2}.

And AB2=xy2x+y22=y2\frac{A-B}{2} = \frac{\frac{x-y}{2} - \frac{x+y}{2}}{2} = \frac{-y}{2}.

So, cos(xy2)cos(x+y2)=2sin(x2)sin(y2)=2sin(x2)(sin(y2))=2sin(x2)sin(y2)\cos\left(\frac{x-y}{2}\right) - \cos\left(\frac{x+y}{2}\right) = -2 \sin\left(\frac{x}{2}\right) \sin\left(\frac{-y}{2}\right) = -2 \sin\left(\frac{x}{2}\right) (-\sin\left(\frac{y}{2}\right)) = 2 \sin\left(\frac{x}{2}\right) \sin\left(\frac{y}{2}\right).

Substitute this back into the equation:

2sin(x+y2)[2sin(x2)sin(y2)]=02 \sin\left(\frac{x+y}{2}\right) \left[ 2 \sin\left(\frac{x}{2}\right) \sin\left(\frac{y}{2}\right) \right] = 0

4sin(x+y2)sin(x2)sin(y2)=04 \sin\left(\frac{x+y}{2}\right) \sin\left(\frac{x}{2}\right) \sin\left(\frac{y}{2}\right) = 0

This equation holds if any of the factors are zero:

a) sin(x+y2)=0    x+y2=nπ    x+y=2nπ\sin\left(\frac{x+y}{2}\right) = 0 \implies \frac{x+y}{2} = n\pi \implies x+y = 2n\pi for some integer nn.

b) sin(x2)=0    x2=kπ    x=2kπ\sin\left(\frac{x}{2}\right) = 0 \implies \frac{x}{2} = k\pi \implies x = 2k\pi for some integer kk.

c) sin(y2)=0    y2=mπ    y=2mπ\sin\left(\frac{y}{2}\right) = 0 \implies \frac{y}{2} = m\pi \implies y = 2m\pi for some integer mm.

Step 2: Analyze the second equation

The second equation is x+y=1|x| + |y| = 1. This equation represents a square with vertices at (1,0)(1,0), (0,1)(0,1), (1,0)(-1,0), and (0,1)(0,-1).

From x+y=1|x| + |y| = 1, we know that:

1x1-1 \le x \le 1 and 1y1-1 \le y \le 1.

Now, we combine the conditions from Step 1 with this constraint.

Case 1: x+y=2nπx+y = 2n\pi

Since 1x1-1 \le x \le 1 and 1y1-1 \le y \le 1, the sum x+yx+y must be in the range [2,2][-2, 2].

So, 2nπ2n\pi must be in [2,2][-2, 2].

For n=0n=0, x+y=0x+y = 0, which is in the range.

For n=1n=1, x+y=2π6.28x+y = 2\pi \approx 6.28, which is outside the range.

For n=1n=-1, x+y=2π6.28x+y = -2\pi \approx -6.28, which is outside the range.

Thus, the only possibility is x+y=0x+y=0, or y=xy=-x.

Substitute y=xy=-x into x+y=1|x|+|y|=1:

x+x=1|x| + |-x| = 1

x+x=1|x| + |x| = 1

2x=1    x=122|x| = 1 \implies |x| = \frac{1}{2}

This gives two possibilities for xx:

  • If x=12x = \frac{1}{2}, then y=x=12y = -x = -\frac{1}{2}. So, (12,12)(\frac{1}{2}, -\frac{1}{2}) is a solution.

  • If x=12x = -\frac{1}{2}, then y=x=12y = -x = \frac{1}{2}. So, (12,12)(-\frac{1}{2}, \frac{1}{2}) is a solution.

Case 2: x=2kπx = 2k\pi

Since 1x1-1 \le x \le 1, 2kπ2k\pi must be in [1,1][-1, 1].

The only integer kk for which this is true is k=0k=0.

So, x=0x=0.

Substitute x=0x=0 into x+y=1|x|+|y|=1:

0+y=1    y=1|0| + |y| = 1 \implies |y| = 1

This gives two possibilities for yy:

  • If y=1y=1, then x=0x=0. So, (0,1)(0,1) is a solution.

  • If y=1y=-1, then x=0x=0. So, (0,1)(0,-1) is a solution.

Case 3: y=2mπy = 2m\pi

Since 1y1-1 \le y \le 1, 2mπ2m\pi must be in [1,1][-1, 1].

The only integer mm for which this is true is m=0m=0.

So, y=0y=0.

Substitute y=0y=0 into x+y=1|x|+|y|=1:

x+0=1    x=1|x| + |0| = 1 \implies |x| = 1

This gives two possibilities for xx:

  • If x=1x=1, then y=0y=0. So, (1,0)(1,0) is a solution.

  • If x=1x=-1, then y=0y=0. So, (1,0)(-1,0) is a solution.

Step 3: List all distinct solutions

The solutions found are:

  1. (12,12)(\frac{1}{2}, -\frac{1}{2})
  2. (12,12)(-\frac{1}{2}, \frac{1}{2})
  3. (0,1)(0,1)
  4. (0,1)(0,-1)
  5. (1,0)(1,0)
  6. (1,0)(-1,0)

All these 6 ordered pairs are distinct and satisfy both equations.

The problem asks for the number of ordered pairs (x,y)(x,y).

The final answer is 6\boxed{6}

Explanation of the solution:

The first equation sinx+siny=sin(x+y)\sin x + \sin y = \sin(x+y) simplifies to 4sin(x+y2)sin(x2)sin(y2)=04 \sin\left(\frac{x+y}{2}\right) \sin\left(\frac{x}{2}\right) \sin\left(\frac{y}{2}\right) = 0. This implies that either x+y=2nπx+y=2n\pi, x=2kπx=2k\pi, or y=2mπy=2m\pi for integers n,k,mn, k, m.

The second equation x+y=1|x|+|y|=1 defines a square in the Cartesian plane with vertices at (1,0),(0,1),(1,0),(0,1)(1,0), (0,1), (-1,0), (0,-1). This constraint limits the possible values of xx and yy to the range [1,1][-1, 1].

Combining these conditions:

  1. For x+y=2nπx+y=2n\pi, the only integer nn that keeps x+yx+y within [2,2][-2,2] is n=0n=0, so x+y=0x+y=0. Intersecting y=xy=-x with x+y=1|x|+|y|=1 yields two points: (12,12)(\frac{1}{2}, -\frac{1}{2}) and (12,12)(-\frac{1}{2}, \frac{1}{2}).

  2. For x=2kπx=2k\pi, the only integer kk that keeps xx within [1,1][-1,1] is k=0k=0, so x=0x=0. Intersecting x=0x=0 (y-axis) with x+y=1|x|+|y|=1 yields two points: (0,1)(0,1) and (0,1)(0,-1).

  3. For y=2mπy=2m\pi, the only integer mm that keeps yy within [1,1][-1,1] is m=0m=0, so y=0y=0. Intersecting y=0y=0 (x-axis) with x+y=1|x|+|y|=1 yields two points: (1,0)(1,0) and (1,0)(-1,0).

All six points are distinct, hence there are 6 ordered pairs (x,y)(x,y) that satisfy both equations.