Solveeit Logo

Question

Mathematics Question on Straight lines

Slope of a line passing through P(2, 3) and intersecting the line, x + y = 7 at a distance of 4 units from P, is

A

515+1\frac{\sqrt{5}-1}{\sqrt{5}+1}

B

151+5\frac{1- \sqrt{5}}{1+ \sqrt{5}}

C

171+7\frac{1- \sqrt{7}}{1+ \sqrt{7}}

D

717+1\frac{\sqrt{7}-1}{\sqrt{7}+1}

Answer

171+7\frac{1- \sqrt{7}}{1+ \sqrt{7}}

Explanation

Solution

x=2+rcosθx = 2 + rcos \theta y=3+rsinθy = 3 + rsin \theta \Rightarrow 2+rcosθ+3+rsinθ=72 + r cos \theta + 3 + rsin \theta = 7 \Rightarrow r(cosθ+sinθr(cos\theta + sin \theta) = 2 sinθ+cosθ=2r=2±4=±12\Rightarrow \, \, sin\theta + cos \theta = \frac{2}{r} = \frac{2}{\pm 4} = \pm \frac{1}{2} 1+sin2θ=14\Rightarrow \, \, 1 + sin2 \theta \, = \frac{1}{4} sin2θ=34\Rightarrow \, \, \, sin2\theta = -\frac{3}{4} 2m1+m2=34\Rightarrow \, \frac{2m}{1+m^2} = -\frac{3}{4} 3m2+8m+3=0\Rightarrow \, 3m^2 + 8m + 3 =0 m=4±717\Rightarrow \, \, m = \, \frac{-4 \pm \sqrt{7}}{1-7} 171+7=(17)217=8276=4+73\frac{1-\sqrt{7}}{1+\sqrt{7}} = \frac{(1-\sqrt{7})^2}{1-7} = \frac{8-2\sqrt{7}}{-6} = \frac{-4 + \sqrt{7}}{3}