Question
Mathematics Question on applications of integrals
Sketch the graph of y=|x+3|and evaluate ∫−60∣x+3∣dx
Answer
The given equation is y=|x+3|
The corresponding values of x and y are given in the following table.
x | -6 | -5 | -4 | -3 | -2 | -1 | 0 |
---|---|---|---|---|---|---|---|
y | 3 | 2 | 1 | 0 | 1 | 2 | 3 |
On plotting these points, we obtain the graph of y=|x+3| as follows.
It is known that, (x+3)≤0 for -6≤x≤-3 and(x+3)≥0 for -3≤x≤0
∴∫−60∣x+3∣dx=-∫−6−3∣x+3∣dx+∫−30(x+3)dx
=-\bigg[$$\frac{x^2}{2}+3x]−6−3+\bigg[$$\frac{x^2}{2}+3x]−30
=-\bigg[ \bigg($$\frac{(-3)^2}{2}+3(-3))-\bigg($$\frac{(-6)^2}{2}+3(-6))]+[0-(2(−3)2+3(-3))]
=-\bigg[$$-\frac{9}{2}$$\bigg]-\bigg[$$-\frac{9}{2}$$\bigg]
=9