Solveeit Logo

Question

Question: Six faces of a die are marked with the numbers ![](https://cdn.pureessence.tech/canvas_80.png?top_l...

Six faces of a die are marked with the numbers

The die is thrown thrice. The probability that the sum of the numbers thrown is six, is

A

172\frac { 1 } { 72 }

B

112\frac { 1 } { 12 }

C

5108\frac { 5 } { 108 }

D

136\frac { 1 } { 36 }

Answer

5108\frac { 5 } { 108 }

Explanation

Solution

Total number of elementary events =63= 6 ^ { 3 }

Favourable number of elementary events.

== Coeff. of x6x ^ { 6 } in (x+x1+x0+x2+x2+x3)3\left( x + x ^ { - 1 } + x ^ { 0 } + x ^ { - 2 } + x ^ { 2 } + x ^ { 3 } \right) ^ { 3 }

== Coeff.of x12x ^ { 12 } in (1x6)3(1x)3\left( 1 - x ^ { 6 } \right) ^ { 3 } ( 1 - x ) ^ { - 3 }

=12+31C313C16+31C31+3C2= { } ^ { 12 + 3 - 1 } \mathrm { C } _ { 3 - 1 } - { } ^ { 3 } \mathrm { C } _ { 1 } \cdot { } ^ { 6 + 3 - 1 } \mathrm { C } _ { 3 - 1 } + { } ^ { 3 } \mathrm { C } _ { 2 }

=14C23C1×8C2+3C2=9184+3=10= { } ^ { 14 } \mathrm { C } _ { 2 } - { } ^ { 3 } \mathrm { C } _ { 1 } \times { } ^ { 8 } \mathrm { C } _ { 2 } + { } ^ { 3 } \mathrm { C } _ { 2 } = 91 - 84 + 3 = 10

Hence, required probability =1063=5108= \frac { 10 } { 6 ^ { 3 } } = \frac { 5 } { 108 }