Solveeit Logo

Question

Question: Six boys and six girls sit in a row randomly. The probability that the six girls sit together...

Six boys and six girls sit in a row randomly. The probability that the six girls sit together

A

177\frac { 1 } { 77 }

B

1132\frac { 1 } { 132 }

C

1231\frac { 1 } { 231 }

D

None of these

Answer

1132\frac { 1 } { 132 }

Explanation

Solution

6 boys and 6 girls can be arranged in a row in 12!12 ! ways. If all the 6 girls are together, then the number of arrangement are 7!×6!7 ! \times 6 ! .

Hence required probability=7!.6!12!= \frac { 7 ! .6 ! } { 12 ! }

=6×5×4×3×212×11×10×9×8=1132= \frac { 6 \times 5 \times 4 \times 3 \times 2 } { 12 \times 11 \times 10 \times 9 \times 8 } = \frac { 1 } { 132 }.