Question
Question: If 2tan⁻¹ (cos x) = tan⁻¹ (2 cosec x) then sin x + cos x =...
If 2tan⁻¹ (cos x) = tan⁻¹ (2 cosec x) then sin x + cos x =

2√2
√2
1/√2
1/2
√2
Solution
The given equation is 2tan−1(cosx)=tan−1(2cosecx).
Using the identity 2tan−1y=tan−1(1−y22y), the left side becomes: 2tan−1(cosx)=tan−1(1−cos2x2cosx)=tan−1(sin2x2cosx)
So, the equation becomes: tan−1(sin2x2cosx)=tan−1(2cosecx)
For the principal values, if tan−1A=tan−1B, then A=B. sin2x2cosx=2cosecx sin2x2cosx=sinx2
Assuming sinx=0 (which must be true for cosecx to be defined), we can multiply both sides by sinx: sinx2cosx=2 cotx=1
The general solution is x=nπ+4π, where n is an integer.
For the identity 2tan−1y=tan−1(1−y22y) to be valid, we must have y2<1, which means cos2x<1. This implies cosx=±1, so x=nπ.
The solution x=4π satisfies this condition.
Now, we need to find sinx+cosx: For x=4π: sin(4π)+cos(4π)=21+21=22=2