Solveeit Logo

Question

Question: If 2tan⁻¹ (cos x) = tan⁻¹ (2 cosec x) then sin x + cos x =...

If 2tan⁻¹ (cos x) = tan⁻¹ (2 cosec x) then sin x + cos x =

A

2√2

B

√2

C

1/√2

D

1/2

Answer

√2

Explanation

Solution

The given equation is 2tan1(cosx)=tan1(2cosecx)2\tan^{-1} (\cos x) = \tan^{-1} (2 \operatorname{cosec} x).

Using the identity 2tan1y=tan1(2y1y2)2\tan^{-1} y = \tan^{-1}\left(\frac{2y}{1-y^2}\right), the left side becomes: 2tan1(cosx)=tan1(2cosx1cos2x)=tan1(2cosxsin2x)2\tan^{-1}(\cos x) = \tan^{-1}\left(\frac{2\cos x}{1-\cos^2 x}\right) = \tan^{-1}\left(\frac{2\cos x}{\sin^2 x}\right)

So, the equation becomes: tan1(2cosxsin2x)=tan1(2cosecx)\tan^{-1}\left(\frac{2\cos x}{\sin^2 x}\right) = \tan^{-1}(2\operatorname{cosec} x)

For the principal values, if tan1A=tan1B\tan^{-1} A = \tan^{-1} B, then A=BA=B. 2cosxsin2x=2cosecx\frac{2\cos x}{\sin^2 x} = 2\operatorname{cosec} x 2cosxsin2x=2sinx\frac{2\cos x}{\sin^2 x} = \frac{2}{\sin x}

Assuming sinx0\sin x \neq 0 (which must be true for cosecx\operatorname{cosec} x to be defined), we can multiply both sides by sinx\sin x: 2cosxsinx=2\frac{2\cos x}{\sin x} = 2 cotx=1\cot x = 1

The general solution is x=nπ+π4x = n\pi + \frac{\pi}{4}, where nn is an integer.

For the identity 2tan1y=tan1(2y1y2)2\tan^{-1} y = \tan^{-1}\left(\frac{2y}{1-y^2}\right) to be valid, we must have y2<1y^2 < 1, which means cos2x<1\cos^2 x < 1. This implies cosx±1\cos x \neq \pm 1, so xnπx \neq n\pi.

The solution x=π4x = \frac{\pi}{4} satisfies this condition.

Now, we need to find sinx+cosx\sin x + \cos x: For x=π4x = \frac{\pi}{4}: sin(π4)+cos(π4)=12+12=22=2\sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}