Solveeit Logo

Question

Question: $\sin(\frac{2\pi}{7})+\sin(\frac{4\pi}{7})+\sin(\frac{8\pi}{7})$...

sin(2π7)+sin(4π7)+sin(8π7)\sin(\frac{2\pi}{7})+\sin(\frac{4\pi}{7})+\sin(\frac{8\pi}{7})

Answer

72\frac{\sqrt{7}}{2}

Explanation

Solution

The problem asks to evaluate the sum S=sin(2π7)+sin(4π7)+sin(8π7)S = \sin(\frac{2\pi}{7})+\sin(\frac{4\pi}{7})+\sin(\frac{8\pi}{7}).

First, let's simplify the term sin(8π7)\sin(\frac{8\pi}{7}): sin(8π7)=sin(π+π7)=sin(π7)\sin(\frac{8\pi}{7}) = \sin(\pi + \frac{\pi}{7}) = -\sin(\frac{\pi}{7}).

So the sum becomes: S=sin(2π7)+sin(4π7)sin(π7)S = \sin(\frac{2\pi}{7})+\sin(\frac{4\pi}{7})-\sin(\frac{\pi}{7}).

This is a common problem that can be solved using properties of complex numbers and roots of unity, specifically Gaussian periods. Let ω=ei2π7\omega = e^{i\frac{2\pi}{7}}. The roots of z71=0z^7 - 1 = 0 are ωk\omega^k for k=0,1,,6k=0, 1, \dots, 6. The sum of all roots is zero: k=06ωk=1+ω+ω2+ω3+ω4+ω5+ω6=0\sum_{k=0}^{6} \omega^k = 1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6 = 0.

Let's consider the quadratic residues modulo 7. The non-zero residues are {1,2,3,4,5,6}\{1, 2, 3, 4, 5, 6\}. The quadratic residues are 1211^2 \equiv 1, 2242^2 \equiv 4, 32923^2 \equiv 9 \equiv 2. So, the set of quadratic residues is R={1,2,4}R = \{1, 2, 4\}. The set of quadratic non-residues is N={3,5,6}N = \{3, 5, 6\}.

Define the Gaussian periods: η0=kRωk=ω1+ω2+ω4=ei2π7+ei4π7+ei8π7\eta_0 = \sum_{k \in R} \omega^k = \omega^1 + \omega^2 + \omega^4 = e^{i\frac{2\pi}{7}} + e^{i\frac{4\pi}{7}} + e^{i\frac{8\pi}{7}}. η1=kNωk=ω3+ω5+ω6=ei6π7+ei10π7+ei12π7\eta_1 = \sum_{k \in N} \omega^k = \omega^3 + \omega^5 + \omega^6 = e^{i\frac{6\pi}{7}} + e^{i\frac{10\pi}{7}} + e^{i\frac{12\pi}{7}}.

From the sum of all roots: 1+η0+η1=0    η0+η1=11 + \eta_0 + \eta_1 = 0 \implies \eta_0 + \eta_1 = -1.

Now, let's consider the product η0η1\eta_0 \eta_1: η0η1=(ω1+ω2+ω4)(ω3+ω5+ω6)\eta_0 \eta_1 = (\omega^1 + \omega^2 + \omega^4)(\omega^3 + \omega^5 + \omega^6) =ω4+ω6+ω7+ω5+ω7+ω8+ω7+ω9+ω10= \omega^4 + \omega^6 + \omega^7 + \omega^5 + \omega^7 + \omega^8 + \omega^7 + \omega^9 + \omega^{10}. Since ω7=1\omega^7 = 1, we have: η0η1=ω4+ω6+1+ω5+1+ω1+1+ω2+ω3\eta_0 \eta_1 = \omega^4 + \omega^6 + 1 + \omega^5 + 1 + \omega^1 + 1 + \omega^2 + \omega^3 (using ω8=ω\omega^8=\omega, ω9=ω2\omega^9=\omega^2, ω10=ω3\omega^{10}=\omega^3) Rearranging the terms: η0η1=3+(ω1+ω2+ω3+ω4+ω5+ω6)\eta_0 \eta_1 = 3 + (\omega^1 + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6). Since k=16ωk=1\sum_{k=1}^{6} \omega^k = -1: η0η1=3+(1)=2\eta_0 \eta_1 = 3 + (-1) = 2.

So we have a system of equations for η0\eta_0 and η1\eta_1:

  1. η0+η1=1\eta_0 + \eta_1 = -1
  2. η0η1=2\eta_0 \eta_1 = 2

η0\eta_0 and η1\eta_1 are the roots of the quadratic equation x2(η0+η1)x+η0η1=0x^2 - (\eta_0 + \eta_1)x + \eta_0 \eta_1 = 0: x2(1)x+2=0    x2+x+2=0x^2 - (-1)x + 2 = 0 \implies x^2 + x + 2 = 0. Using the quadratic formula, x=1±124(1)(2)2(1)=1±182=1±72=1±i72x = \frac{-1 \pm \sqrt{1^2 - 4(1)(2)}}{2(1)} = \frac{-1 \pm \sqrt{1 - 8}}{2} = \frac{-1 \pm \sqrt{-7}}{2} = \frac{-1 \pm i\sqrt{7}}{2}.

So, {η0,η1}={1+i72,1i72}\{\eta_0, \eta_1\} = \{\frac{-1 + i\sqrt{7}}{2}, \frac{-1 - i\sqrt{7}}{2}\}. We need to determine which one is η0\eta_0. η0=cos(2π7)+cos(4π7)+cos(8π7)+i(sin(2π7)+sin(4π7)+sin(8π7))\eta_0 = \cos(\frac{2\pi}{7}) + \cos(\frac{4\pi}{7}) + \cos(\frac{8\pi}{7}) + i(\sin(\frac{2\pi}{7}) + \sin(\frac{4\pi}{7}) + \sin(\frac{8\pi}{7})). The sum we want to evaluate is the imaginary part of η0\eta_0.

Let's analyze the real part of η0\eta_0: Re(η0)=cos(2π7)+cos(4π7)+cos(8π7)\text{Re}(\eta_0) = \cos(\frac{2\pi}{7}) + \cos(\frac{4\pi}{7}) + \cos(\frac{8\pi}{7}). We know cos(8π7)=cos(2π6π7)=cos(6π7)\cos(\frac{8\pi}{7}) = \cos(2\pi - \frac{6\pi}{7}) = \cos(\frac{6\pi}{7}). So, Re(η0)=cos(2π7)+cos(4π7)+cos(6π7)\text{Re}(\eta_0) = \cos(\frac{2\pi}{7}) + \cos(\frac{4\pi}{7}) + \cos(\frac{6\pi}{7}). We know that cos(2π7)>0\cos(\frac{2\pi}{7}) > 0, cos(4π7)<0\cos(\frac{4\pi}{7}) < 0, cos(6π7)<0\cos(\frac{6\pi}{7}) < 0. However, the sum cos(2π7)+cos(4π7)+cos(6π7)\cos(\frac{2\pi}{7}) + \cos(\frac{4\pi}{7}) + \cos(\frac{6\pi}{7}) is negative. Consider the full sum of cosines: k=16cos(2kπ7)=cos(2π7)+cos(4π7)+cos(6π7)+cos(8π7)+cos(10π7)+cos(12π7)=1\sum_{k=1}^{6} \cos(\frac{2k\pi}{7}) = \cos(\frac{2\pi}{7}) + \cos(\frac{4\pi}{7}) + \cos(\frac{6\pi}{7}) + \cos(\frac{8\pi}{7}) + \cos(\frac{10\pi}{7}) + \cos(\frac{12\pi}{7}) = -1. Using cos(2kπ7)=cos(2(7k)π7)\cos(\frac{2k\pi}{7}) = \cos(\frac{2(7-k)\pi}{7}), we have: cos(8π7)=cos(6π7)\cos(\frac{8\pi}{7}) = \cos(\frac{6\pi}{7}) cos(10π7)=cos(4π7)\cos(\frac{10\pi}{7}) = \cos(\frac{4\pi}{7}) cos(12π7)=cos(2π7)\cos(\frac{12\pi}{7}) = \cos(\frac{2\pi}{7}) So, 2(cos(2π7)+cos(4π7)+cos(6π7))=12(\cos(\frac{2\pi}{7}) + \cos(\frac{4\pi}{7}) + \cos(\frac{6\pi}{7})) = -1. Therefore, cos(2π7)+cos(4π7)+cos(6π7)=12\cos(\frac{2\pi}{7}) + \cos(\frac{4\pi}{7}) + \cos(\frac{6\pi}{7}) = -\frac{1}{2}. This means Re(η0)=12\text{Re}(\eta_0) = -\frac{1}{2}.

Comparing this with the possible values for xx: 1+i72\frac{-1 + i\sqrt{7}}{2} has real part 12-\frac{1}{2}. 1i72\frac{-1 - i\sqrt{7}}{2} has real part 12-\frac{1}{2}. Both have the same real part.

Now we need to determine the sign of the imaginary part. S=sin(2π7)+sin(4π7)sin(π7)S = \sin(\frac{2\pi}{7})+\sin(\frac{4\pi}{7})-\sin(\frac{\pi}{7}). We know that for x(0,π)x \in (0, \pi), sin(x)>0\sin(x) > 0. 2π70.897\frac{2\pi}{7} \approx 0.897 radians, which is in the first quadrant. sin(2π7)>0\sin(\frac{2\pi}{7}) > 0. 4π71.795\frac{4\pi}{7} \approx 1.795 radians, which is in the second quadrant. sin(4π7)>0\sin(\frac{4\pi}{7}) > 0. π70.448\frac{\pi}{7} \approx 0.448 radians, which is in the first quadrant. sin(π7)>0\sin(\frac{\pi}{7}) > 0.

We need to compare the magnitudes. Consider the function f(x)=sin(x)f(x) = \sin(x). It is concave down on (0,π)(0, \pi). The angles are π7,2π7,4π7\frac{\pi}{7}, \frac{2\pi}{7}, \frac{4\pi}{7}. We know sin(4π7)=sin(3π7)\sin(\frac{4\pi}{7}) = \sin(\frac{3\pi}{7}). So S=sin(2π7)+sin(3π7)sin(π7)S = \sin(\frac{2\pi}{7}) + \sin(\frac{3\pi}{7}) - \sin(\frac{\pi}{7}). Let x=π7x = \frac{\pi}{7}. Then S=sin(2x)+sin(3x)sin(x)S = \sin(2x) + \sin(3x) - \sin(x). S=2sin(x)cos(x)+(3sin(x)4sin3(x))sin(x)S = 2\sin(x)\cos(x) + (3\sin(x) - 4\sin^3(x)) - \sin(x). S=sin(x)(2cos(x)+34sin2(x)1)S = \sin(x)(2\cos(x) + 3 - 4\sin^2(x) - 1). S=sin(x)(2cos(x)+24(1cos2(x)))S = \sin(x)(2\cos(x) + 2 - 4(1-\cos^2(x))). S=sin(x)(2cos(x)+24+4cos2(x))S = \sin(x)(2\cos(x) + 2 - 4 + 4\cos^2(x)). S=sin(x)(4cos2(x)+2cos(x)2)S = \sin(x)(4\cos^2(x) + 2\cos(x) - 2). S=2sin(x)(2cos2(x)+cos(x)1)S = 2\sin(x)(2\cos^2(x) + \cos(x) - 1). S=2sin(x)(2cos(x)1)(cos(x)+1)S = 2\sin(x)(2\cos(x)-1)(\cos(x)+1). Since x=π7x = \frac{\pi}{7}, which is in the first quadrant, sin(x)>0\sin(x) > 0 and cos(x)>0\cos(x) > 0. Also, cos(x)+1>0\cos(x)+1 > 0. We need to check the sign of (2cos(x)1)(2\cos(x)-1). For x=π7x = \frac{\pi}{7}, x<π3x < \frac{\pi}{3}. Since cos(x)\cos(x) is a decreasing function in (0,π)(0, \pi), cos(π7)>cos(π3)=12\cos(\frac{\pi}{7}) > \cos(\frac{\pi}{3}) = \frac{1}{2}. So 2cos(π7)>12\cos(\frac{\pi}{7}) > 1, which means 2cos(π7)1>02\cos(\frac{\pi}{7})-1 > 0. Therefore, S>0S > 0.

Since Re(η0)=12\text{Re}(\eta_0) = -\frac{1}{2} and Im(η0)>0\text{Im}(\eta_0) > 0, we must have: η0=1+i72\eta_0 = \frac{-1 + i\sqrt{7}}{2}.

The value we are looking for is the imaginary part of η0\eta_0. Im(η0)=72\text{Im}(\eta_0) = \frac{\sqrt{7}}{2}.