Solveeit Logo

Question

Question: Sine function whose period is 6 is A) \(\sin \dfrac{{2\pi x}}{3}\) B) \(\sin \dfrac{{\pi x}}{3...

Sine function whose period is 6 is
A) sin2πx3\sin \dfrac{{2\pi x}}{3}
B) sinπx3\sin \dfrac{{\pi x}}{3}
C) sinπx6\sin \dfrac{{\pi x}}{6}
D) sin3πx2\sin \dfrac{{3\pi x}}{2}

Explanation

Solution

We can assume that f(x)=sinkxf\left( x \right) = \sin kx is the required function. Then we can find its period in terms of k. Then we can equate the period to 6 and solve for k. We can substitute the value of k in the function to get the required function.

Complete step by step solution:
Let us assume f(x)f\left( x \right) to be the required function. As it is a sin function, we can write it as,
f(x)=sinkxf\left( x \right) = \sin kx
We know that all trigonometric functions have a period of 2π2\pi
So, the given function has a period of 2πk\dfrac{{2\pi }}{k}
We are given that the function has a period of 6. So, we can equate the period of the function to 6 and find the value of k.
2πk=6\Rightarrow \dfrac{{2\pi }}{k} = 6
On cross multiplying, we get
k=2π6\Rightarrow k = \dfrac{{2\pi }}{6}
On cancelling the common terms, we get
k=π3\Rightarrow k = \dfrac{\pi }{3}
On substituting the value of k in the function, we get
f(x)=sinπx3f\left( x \right) = \sin \dfrac{{\pi x}}{3}

Therefore, the required function with period 6 is sinπx3\sin \dfrac{{\pi x}}{3}
So, the correct answer is option B.

Note:
Alternatively, we are given that the period of the function is 6.
f(x)=f(6+x)\Rightarrow f\left( x \right) = f\left( {6 + x} \right)
Now we can check through the options.
So, option A will become,
f(6+x)=sin2π(6+x)3f\left( {6 + x} \right) = \sin \dfrac{{2\pi \left( {6 + x} \right)}}{3}
On expanding the brackets, we get
f(6+x)=sin(2π×63+2πx3)\Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{2\pi \times 6}}{3} + \dfrac{{2\pi x}}{3}} \right)
On simplification we have,
f(6+x)=sin(4π+2πx3)\Rightarrow f\left( {6 + x} \right) = \sin \left( {4\pi + \dfrac{{2\pi x}}{3}} \right)
This cannot be the answer as the function will have period 6 after it completes 2 cycles.
Now check option B.
f(x)=sin(πx3)f\left( x \right) = \sin \left( {\dfrac{{\pi x}}{3}} \right)
f(6+x)=sinπ(6+x)3\Rightarrow f\left( {6 + x} \right) = \sin \dfrac{{\pi \left( {6 + x} \right)}}{3}
On expanding the brackets, we get
f(6+x)=sin(π×63+πx3)\Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{\pi \times 6}}{3} + \dfrac{{\pi x}}{3}} \right)
On simplification we have,
f(6+x)=sin(2π+πx3)\Rightarrow f\left( {6 + x} \right) = \sin \left( {2\pi + \dfrac{{\pi x}}{3}} \right)
We know that the trigonometric functions have a period of 2π2\pi
f(6+x)=sin(πx3)\Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{\pi x}}{3}} \right)
f(6+x)=f(x)\Rightarrow f\left( {6 + x} \right) = f\left( x \right)
Now check option C.
f(x)=sin(πx6)f\left( x \right) = \sin \left( {\dfrac{{\pi x}}{6}} \right)
f(6+x)=sinπ(6+x)6\Rightarrow f\left( {6 + x} \right) = \sin \dfrac{{\pi \left( {6 + x} \right)}}{6}
On expanding the brackets, we get
f(6+x)=sin(π×66+πx6)\Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{\pi \times 6}}{6} + \dfrac{{\pi x}}{6}} \right)
On simplification we get
f(6+x)=sin(π+πx6)\Rightarrow f\left( {6 + x} \right) = \sin \left( {\pi + \dfrac{{\pi x}}{6}} \right)
But the trigonometric functions have a period of 2π2\pi
sin(π+πx6)sin(πx6)\Rightarrow \sin \left( {\pi + \dfrac{{\pi x}}{6}} \right) \ne \sin \left( {\dfrac{{\pi x}}{6}} \right)
f(6+x)f(x)\Rightarrow f\left( {6 + x} \right) \ne f\left( x \right)
So, option C is not a solution.
Now we can consider option D.
f(x)=sin(3πx2)f\left( x \right) = \sin \left( {\dfrac{{3\pi x}}{2}} \right)
f(6+x)=sin3π(6+x)2\Rightarrow f\left( {6 + x} \right) = \sin \dfrac{{3\pi \left( {6 + x} \right)}}{2}
On expanding the brackets, we get
f(6+x)=sin(3π×62+3πx2)\Rightarrow f\left( {6 + x} \right) = \sin \left( {\dfrac{{3\pi \times 6}}{2} + \dfrac{{3\pi x}}{2}} \right)
On simplification we get,
f(6+x)=sin(9π+πx6)\Rightarrow f\left( {6 + x} \right) = \sin \left( {9\pi + \dfrac{{\pi x}}{6}} \right)
But the trigonometric functions have a period of 2π2\pi
sin(9π+2πx3)sin(2πx3)\Rightarrow \sin \left( {9\pi + \dfrac{{2\pi x}}{3}} \right) \ne \sin \left( {\dfrac{{2\pi x}}{3}} \right)
f(6+x)f(x)\Rightarrow f\left( {6 + x} \right) \ne f\left( x \right)
So, option D is not a solution.