Solveeit Logo

Question

Question: A force $\overrightarrow{F} = 2\hat{i} + 3\hat{j} - \hat{k}$ acts at a point (2, -3, 1). Then magnit...

A force F=2i^+3j^k^\overrightarrow{F} = 2\hat{i} + 3\hat{j} - \hat{k} acts at a point (2, -3, 1). Then magnitude of torque about point (0, 0, 2) will be:

A

6 unit

B

353\sqrt{5} unit

C

656\sqrt{5} unit

D

none of these

Answer

656\sqrt{5} unit

Explanation

Solution

The problem asks for the magnitude of torque about a given point due to a force acting at another point.

  1. Identify the force vector (F\overrightarrow{F}): F=2i^+3j^k^\overrightarrow{F} = 2\hat{i} + 3\hat{j} - \hat{k}

  2. Identify the point where the force acts (P): P=(2,3,1)P = (2, -3, 1)

  3. Identify the point about which the torque is calculated (O): O=(0,0,2)O = (0, 0, 2)

  4. Calculate the position vector (r\overrightarrow{r}): The position vector r\overrightarrow{r} is drawn from the point about which torque is calculated to the point where the force acts. r=OP=PO\overrightarrow{r} = \overrightarrow{OP} = P - O r=(20)i^+(30)j^+(12)k^\overrightarrow{r} = (2 - 0)\hat{i} + (-3 - 0)\hat{j} + (1 - 2)\hat{k} r=2i^3j^k^\overrightarrow{r} = 2\hat{i} - 3\hat{j} - \hat{k}

  5. Calculate the torque vector (τ\overrightarrow{\tau}): The torque τ\overrightarrow{\tau} is given by the cross product of the position vector and the force vector: τ=r×F\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F} τ=(2i^3j^k^)×(2i^+3j^k^)\overrightarrow{\tau} = (2\hat{i} - 3\hat{j} - \hat{k}) \times (2\hat{i} + 3\hat{j} - \hat{k})

    We can calculate the cross product using a determinant:

    τ=i^j^k^231231\overrightarrow{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & -1 \\ 2 & 3 & -1 \end{vmatrix} τ=i^((3)(1)(3)(1))j^((2)(1)(2)(1))+k^((2)(3)(2)(3))\overrightarrow{\tau} = \hat{i}((-3)(-1) - (3)(-1)) - \hat{j}((2)(-1) - (2)(-1)) + \hat{k}((2)(3) - (2)(-3)) τ=i^(3(3))j^(2(2))+k^(6(6))\overrightarrow{\tau} = \hat{i}(3 - (-3)) - \hat{j}(-2 - (-2)) + \hat{k}(6 - (-6)) τ=i^(3+3)j^(2+2)+k^(6+6)\overrightarrow{\tau} = \hat{i}(3 + 3) - \hat{j}(-2 + 2) + \hat{k}(6 + 6) τ=6i^0j^+12k^\overrightarrow{\tau} = 6\hat{i} - 0\hat{j} + 12\hat{k} τ=6i^+12k^\overrightarrow{\tau} = 6\hat{i} + 12\hat{k}
  6. Calculate the magnitude of the torque (τ|\overrightarrow{\tau}|): The magnitude of a vector Ai^+Bj^+Ck^A\hat{i} + B\hat{j} + C\hat{k} is A2+B2+C2\sqrt{A^2 + B^2 + C^2}.

    τ=(6)2+(0)2+(12)2|\overrightarrow{\tau}| = \sqrt{(6)^2 + (0)^2 + (12)^2} τ=36+0+144|\overrightarrow{\tau}| = \sqrt{36 + 0 + 144} τ=180|\overrightarrow{\tau}| = \sqrt{180}

    To simplify 180\sqrt{180}, we find its prime factors: 180=36×5=62×5180 = 36 \times 5 = 6^2 \times 5.

    τ=62×5=65 unit|\overrightarrow{\tau}| = \sqrt{6^2 \times 5} = 6\sqrt{5} \text{ unit}

The final answer is \boxed{\text{6\sqrt{5} unit}}.

Explanation of the solution:

  1. Determine the position vector r\overrightarrow{r} from the point of rotation to the point of force application: r=(20)i^+(30)j^+(12)k^=2i^3j^k^\overrightarrow{r} = (2-0)\hat{i} + (-3-0)\hat{j} + (1-2)\hat{k} = 2\hat{i} - 3\hat{j} - \hat{k}.
  2. Calculate the torque vector τ\overrightarrow{\tau} using the cross product: τ=r×F\overrightarrow{\tau} = \overrightarrow{r} \times \overrightarrow{F}. τ=(2i^3j^k^)×(2i^+3j^k^)=6i^+12k^\overrightarrow{\tau} = (2\hat{i} - 3\hat{j} - \hat{k}) \times (2\hat{i} + 3\hat{j} - \hat{k}) = 6\hat{i} + 12\hat{k}.
  3. Find the magnitude of the torque vector: τ=62+122=36+144=180=65|\overrightarrow{\tau}| = \sqrt{6^2 + 12^2} = \sqrt{36 + 144} = \sqrt{180} = 6\sqrt{5} unit.

Answer: The magnitude of torque about point (0, 0, 2) will be 656\sqrt{5} unit. The correct option is (C).