Solveeit Logo

Question

Question: $\sin^6x + \cos^6x = \frac{1}{6}$...

sin6x+cos6x=16\sin^6x + \cos^6x = \frac{1}{6}

Answer

The equation has no real solutions. The solution set is \emptyset.

Explanation

Solution

The equation sin6x+cos6x=16\sin^6x + \cos^6x = \frac{1}{6} is simplified using the identity sin6x+cos6x=13sin2xcos2x\sin^6x + \cos^6x = 1 - 3\sin^2x\cos^2x.

The equation becomes 13sin2xcos2x=161 - 3\sin^2x\cos^2x = \frac{1}{6}.

Solving for sin2xcos2x\sin^2x\cos^2x gives sin2xcos2x=518\sin^2x\cos^2x = \frac{5}{18}.

Using the identity sin2(2x)=4sin2xcos2x\sin^2(2x) = 4\sin^2x\cos^2x, we get sin2(2x)=4518=109\sin^2(2x) = 4 \cdot \frac{5}{18} = \frac{10}{9}.

Since the maximum possible value of sin2(2x)\sin^2(2x) for real xx is 1, and 109>1\frac{10}{9} > 1, the equation sin2(2x)=109\sin^2(2x) = \frac{10}{9} has no real solutions.

Thus, the original equation has no real solutions. The solution set is empty.