Solveeit Logo

Question

Question: Sin^2x dx integration...

Sin^2x dx integration

Answer

x2sin2x4+C\frac{x}{2} - \frac{\sin2x}{4} + C

Explanation

Solution

To integrate sin2xdx\sin^2x \, dx, we use the trigonometric identity that relates sin2x\sin^2x to cos2x\cos 2x.

The identity is: cos2x=12sin2x\cos 2x = 1 - 2\sin^2x

Rearranging this identity to express sin2x\sin^2x: 2sin2x=1cos2x2\sin^2x = 1 - \cos 2x sin2x=1cos2x2\sin^2x = \frac{1 - \cos 2x}{2}

Now, substitute this into the integral: sin2xdx=1cos2x2dx\int \sin^2x \, dx = \int \frac{1 - \cos 2x}{2} \, dx =12(1cos2x)dx= \frac{1}{2} \int (1 - \cos 2x) \, dx We can split this into two separate integrals: =12(1dxcos2xdx)= \frac{1}{2} \left( \int 1 \, dx - \int \cos 2x \, dx \right) Integrate each term: The integral of 11 with respect to xx is xx. For the integral of cos2x\cos 2x, we can use a substitution. Let u=2xu = 2x, then du=2dxdu = 2 \, dx, which means dx=12dudx = \frac{1}{2} \, du. cos2xdx=cosu12du=12cosudu=12sinu+C1\int \cos 2x \, dx = \int \cos u \cdot \frac{1}{2} \, du = \frac{1}{2} \int \cos u \, du = \frac{1}{2} \sin u + C_1 Substitute back u=2xu = 2x: cos2xdx=12sin2x+C1\int \cos 2x \, dx = \frac{1}{2} \sin 2x + C_1 Now, combine these results: sin2xdx=12(x12sin2x)+C\int \sin^2x \, dx = \frac{1}{2} \left( x - \frac{1}{2} \sin 2x \right) + C =x2sin2x4+C= \frac{x}{2} - \frac{\sin 2x}{4} + C where CC is the constant of integration.

The core idea is to transform the sin2x\sin^2x term into a form that is easier to integrate using a trigonometric identity. The identity sin2x=1cos2x2\sin^2x = \frac{1 - \cos 2x}{2} is crucial as it converts the squared trigonometric function into a linear term of a multiple angle, which can be integrated directly using standard integral formulas.