Solveeit Logo

Question

Question: \(\sin^{2}\frac{\pi}{8} + \sin^{2}\frac{3\pi}{8} + \sin^{2}\frac{5\pi}{8} + \sin^{2}\frac{7\pi}{8} =...

sin2π8+sin23π8+sin25π8+sin27π8=\sin^{2}\frac{\pi}{8} + \sin^{2}\frac{3\pi}{8} + \sin^{2}\frac{5\pi}{8} + \sin^{2}\frac{7\pi}{8} =

A

1

B

– 1

C

0

D

2

Answer

2

Explanation

Solution

sin2π8+sin23π8+sin25π8+sin27π8\sin^{2}\frac{\pi}{8} + \sin^{2}\frac{3\pi}{8} + \sin^{2}\frac{5\pi}{8} + \sin^{2}\frac{7\pi}{8}

=sin2π8+sin23π8+sin23π8+sin2π8= \sin^{2}\frac{\pi}{8} + \sin^{2}\frac{3\pi}{8} + \sin^{2}\frac{3\pi}{8} + \sin^{2}\frac{\pi}{8}

=2(sin2π8+sin23π8)=2×1=2= 2\left( \sin^{2}\frac{\pi}{8} + \sin^{2}\frac{3\pi}{8} \right) = 2 \times 1 = 2.