Solveeit Logo

Question

Question: $(\sin \theta + i \cos \theta)^n$ is equal to...

(sinθ+icosθ)n(\sin \theta + i \cos \theta)^n is equal to

Answer

cos(nπ2nθ)+isin(nπ2nθ)\cos\left(\frac{n\pi}{2}-n\theta\right) + i\sin\left(\frac{n\pi}{2}-n\theta\right)

Explanation

Solution

  1. Rewrite the Expression:
    Notice that

    sinθ+icosθ=icosθ+sinθ=i(cosθisinθ).\sin\theta + i\cos\theta = i\cos\theta + \sin\theta = i\left(\cos\theta - i\sin\theta\right).

    And since

    eiθ=cosθisinθ,e^{-i\theta}=\cos\theta-i\sin\theta,

    we can write:

    sinθ+icosθ=ieiθ.\sin\theta + i\cos\theta = i\,e^{-i\theta}.
  2. Raising to the Power n:

    (sinθ+icosθ)n=(ieiθ)n=ineinθ.(\sin\theta + i\cos\theta)^n = \left(i\,e^{-i\theta}\right)^n = i^n\,e^{-in\theta}.
  3. Expressing in Trigonometric Form:
    Using Euler’s formula again,

    einθ=cos(nθ)isin(nθ),e^{-in\theta} = \cos(n\theta)- i\sin(n\theta),

    so that

    (sinθ+icosθ)n=in[cos(nθ)isin(nθ)].(\sin\theta + i\cos\theta)^n = i^n \left[\cos(n\theta)- i\sin(n\theta)\right].

    Alternatively, since in=einπ2i^n = e^{i\frac{n\pi}{2}}, we have:

    (sinθ+icosθ)n=ei(nπ2nθ)=cos(nπ2nθ)+isin(nπ2nθ).(\sin\theta + i\cos\theta)^n = e^{i\left(\frac{n\pi}{2} - n\theta\right)} = \cos\left(\frac{n\pi}{2}-n\theta\right) + i\sin\left(\frac{n\pi}{2}-n\theta\right).