Question
Question: $(\sin \theta + i \cos \theta)^n$ is equal to...
(sinθ+icosθ)n is equal to

Answer
cos(2nπ−nθ)+isin(2nπ−nθ)
Explanation
Solution
-
Rewrite the Expression:
sinθ+icosθ=icosθ+sinθ=i(cosθ−isinθ).
Notice thatAnd since
e−iθ=cosθ−isinθ,we can write:
sinθ+icosθ=ie−iθ. -
Raising to the Power n:
(sinθ+icosθ)n=(ie−iθ)n=ine−inθ. -
Expressing in Trigonometric Form:
e−inθ=cos(nθ)−isin(nθ),
Using Euler’s formula again,so that
(sinθ+icosθ)n=in[cos(nθ)−isin(nθ)].Alternatively, since in=ei2nπ, we have:
(sinθ+icosθ)n=ei(2nπ−nθ)=cos(2nπ−nθ)+isin(2nπ−nθ).