Question
Mathematics Question on Inverse Trigonometric Functions
sin[2cos−1cot(2tan−121)] is equal to
A
837
B
857
C
257
D
237
Answer
837
Explanation
Solution
sin[2cos−1cot(2tan−121)] = \sin \left[2 \cos ^{-1} \cot \left\\{ \tan^{-1} \left(\frac{2\left(\frac{1}{2}\right)}{1- \frac{1}{4}}\right)\right\\} \right] = \sin \left[2 \cos ^{-1} \cot \left\\{ \tan ^{-1}\left(\frac{4}{3}\right) \right\\}\right] =sin[2cos−1cot(cot−1(43))] =sin[2cos−1(43)]=sin[cos−1(2(169)−1)] =sin[cos−1(89−1)]=sin[cos−1(81)] =sin[sin−1(1−641)] =6463=89×7=837