Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

sin(cot1(tancos1x)\sin (\cot^{-1}(\tan\,\cos^{-1}x) is equal to

A

xx

B

1x2\sqrt{1-x^2}

C

1x\frac{1}{x}

D

none of these

Answer

xx

Explanation

Solution

Put cos1x=θcos^{-1} x= \theta x=cosθ\therefore x= cos \,\theta tanθ=1x2x\therefore tan\, \theta = \frac{\sqrt{1-x^{2}}}{x} tan(cos1x)=tanθ=1x2x \therefore tan\left(cos^{-1} x\right) = tan\, \theta = \frac{\sqrt{1-x^{2}}}{x} cot1(tan(cos1))=cot1(1x2x)=ϕ \therefore cot^{-1} \left(tan\left(cos^{-1}\right)\right) = cot^{-1}\left(\frac{\sqrt{1-x^{2}}}{x}\right) = \phi (say) cotϕ=1x2x\therefore cot\, \phi = \frac{\sqrt{1-x^{2}}}{x} sinϕ=x1\therefore sin\, \phi = \frac{x}{1} sin(cot1(tan(cos1x)) \therefore sin(cot^{-1}\left(tan\left(cos^{-1}\,x\right)\right) =sinϕ=x = sin \,\phi = x