Question
Mathematics Question on Inverse Trigonometric Functions
sin[cot−1cos(tan−1x)]=1
A
2+x21+x2
B
2+x21−x2
C
2−x21+x2
D
1+x22+x2
Answer
2+x21+x2
Explanation
Solution
cos(tan−1x)=cosθ where θ=tan−1x i.e., tanθ=x ∴cosθ=1+x21 ∴cos(tan−1x)=1+x21 cot−1[cos(tan−1x)]=cot−1[1+x21]=t ⇒cott=1+x21
\therefore sin\left[cot^{-1}\left\\{cos\left(tan^{-1}x\right)\right\\}\right] = \frac{\sqrt{1+x^{2}}}{\sqrt{2+x^{2}}}