Solveeit Logo

Question

Question: \(\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,\) then\(\theta\) equal to...

sin6θ+sin4θ+sin2θ=0,\sin 6\theta + \sin 4\theta + \sin 2\theta = 0, thenθ\theta equal to

A

nπ4ornπ±π3\frac{n\pi}{4}\text{or}n\pi \pm \frac{\pi}{3}

B

nπ4ornπ±π6\frac{n\pi}{4}\text{or}n\pi \pm \frac{\pi}{6}

C

0

D

None of these

Answer

nπ4ornπ±π3\frac{n\pi}{4}\text{or}n\pi \pm \frac{\pi}{3}

Explanation

Solution

(sin6θ+sin2θ)+sin4θ=02sin4θcos2θ+sin4θ=0sin4θ(2cos2θ+1)=0sin4θ=0(\sin 6\theta + \sin 2\theta) + \sin 4\theta = 0 \Rightarrow 2\sin 4\theta\cos 2\theta + \sin 4\theta = 0 \Rightarrow \sin 4\theta(2\cos 2\theta + 1) = 0 \Rightarrow \sin 4\theta = 0 or 2cos2θ+1=02\cos 2\theta + 1 = 0

sin4θ=sin0\sin 4\theta = \sin 0or cos2θ=cos2π3\cos 2\theta = \cos\frac{2\pi}{3}

4θ=nπ4\theta = n\pi or 2θ=2nπ±2π32\theta = 2n\pi \pm \frac{2\pi}{3}

θ=nπ4\theta = \frac{n\pi}{4} or θ=nπ±π3\theta = n\pi \pm \frac{\pi}{3}.