Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

sin47o+sin61osin11osin25o\sin \,\,{{47}^{o}}+\sin {{61}^{o}}-\sin {{11}^{o}}-\sin {{25}^{o}} is equal to

A

sin7o\sin \,{{7}^{o}}

B

cos7o\cos \,{{7}^{o}}

C

sin36o\sin \,{{36}^{o}}

D

cos36o\cos \,{{36}^{o}}

Answer

cos7o\cos \,{{7}^{o}}

Explanation

Solution

sin47osin25o+sin61osin11o\sin {{47}^{o}}-sin{{25}^{o}}+\sin {{61}^{o}}-\sin {{11}^{o}} =2cos36osin11o+2cos36osin25o=2\,\,\cos \,{{36}^{o}}\,\sin {{11}^{o}}+2\cos \,{{36}^{o}}\,\sin {{25}^{o}} =2cos36o[sin11o+sin25o]=2\,\,\cos \,{{36}^{o}}\,[\sin {{11}^{o}}+\,\sin {{25}^{o}}] =2cos36o[2sin(25o+11o2)cos(25o11o2)]=2\,\,\cos \,{{36}^{o}}\left[ 2\,\sin \,\left( \frac{{{25}^{o}}+{{11}^{o}}}{2} \right)\,\cos \,\left( \frac{{{25}^{o}}-{{11}^{o}}}{2} \right) \right] =4cos36osin18ocos7o=4\,\cos \,{{36}^{o}}\,\sin {{18}^{o}}\,\cos {{7}^{o}} =4(5+14)(514)cos7o=4\left( \frac{\sqrt{5}+1}{4} \right)\,\left( \frac{\sqrt{5}-1}{4} \right)\,\cos \,{{7}^{o}} =514cos7o=\frac{5-1}{4}\,\cos \,{{7}^{o}} =cos7o=\,\cos \,{{7}^{o}}