Solveeit Logo

Question

Question: \[\sin 36{^\circ}\sin 72{^\circ}\sin 108{^\circ}\sin 144{^\circ} =\]...

sin36sin72sin108sin144=\sin 36{^\circ}\sin 72{^\circ}\sin 108{^\circ}\sin 144{^\circ} =

A

1/4

B

1/16

C

3/4

D

5/16

Answer

5/16

Explanation

Solution

sin36osin72osin108osin144o\sin{}36^{o}\sin{}72^{o}\sin{}108^{o}\sin{}144^{o}

=sin236osin272o=14{(2sin236o)(2sin272o)}= \sin^{2}36^{o}\sin^{2}{}72^{o} = \frac{1}{4}\left\{ (2\sin^{2}36^{o})(2\sin^{2}{}72^{o}) \right\}

=14{(1cos72o)(1cos144o)}= \frac{1}{4}\left\{ (1 - \cos{}72^{o})(1 - \cos{}144^{o}) \right\}

=14{(1sin18o)(1+cos36o)}= \frac{1}{4}\left\{ (1 - \sin{}18^{o})(1 + \cos{}36^{o}) \right\}

=14[(1514)(1+5+14)]=2016×14=516= \frac{1}{4}\left\lbrack \left( 1 - \frac{\sqrt{5} - 1}{4} \right)\left( 1 + \frac{\sqrt{5} + 1}{4} \right) \right\rbrack = \frac{20}{16} \times \frac{1}{4} = \frac{5}{16}.