Question
Mathematics Question on Inverse Trigonometric Functions
sin2θcos3θ−sin4θcosθ is equal
A
21cosθsin4θ
B
41cosθsin4θ
C
21sin24θ
D
41sinθsin4θ
Answer
41sinθsin4θ
Explanation
Solution
sin2θcos3θ−sin4θcosθ =sin2θcosθ(cos2θ−sin2θ) =sin2θcosθ(cos2θ) =sinθsinθcosθ(cos2θ) =sinθ⋅22sinθcosθ(cos2θ) =21sinθsin2θcos2θ [∵2sinθcosθ=sin2θ] =21sinθ⋅22sin2θcos2θ=41sinθ⋅sin4θ