Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

sin2θcos3θsin4θcosθ\sin^{2}\,\theta\, \cos^{3}\,\theta-\sin^{4}\,\theta\, \cos\,\theta is equal

A

12cosθsin4θ\frac{1}{2} \cos\,\theta\, \sin\,4\theta

B

14cosθsin4θ\frac{1}{4} \cos\,\theta\, \sin\,4\theta

C

12sin24θ\frac{1}{2} \sin^2\,4\theta

D

14sinθsin4θ\frac{1}{4} \sin\,\theta\, \sin\,4\theta

Answer

14sinθsin4θ\frac{1}{4} \sin\,\theta\, \sin\,4\theta

Explanation

Solution

sin2θcos3θsin4θcosθ\sin ^{2} \theta \cos ^{3} \theta-\sin ^{4} \theta \cos \theta =sin2θcosθ(cos2θsin2θ)=\sin ^{2} \theta \cos \theta\left(\cos ^{2} \theta-\sin ^{2} \theta\right) =sin2θcosθ(cos2θ)=\sin ^{2} \theta \cos \theta(\cos 2 \theta) =sinθsinθcosθ(cos2θ)=\sin \theta \sin \theta \cos \theta(\cos 2 \theta) =sinθ22sinθcosθ(cos2θ)=\sin \theta \cdot \frac{2}{2} \sin \theta \cos \theta(\cos 2 \theta) =12sinθsin2θcos2θ=\frac{1}{2} \sin \theta \sin 2 \theta \cos 2 \theta [2sinθcosθ=sin2θ][\because 2 \sin \theta \cos \theta=\sin 2 \theta] =12sinθ22sin2θcos2θ=14sinθsin4θ=\frac{1}{2} \sin \theta \cdot \frac{2}{2} \sin 2 \theta \cos 2 \theta=\frac{1}{4} \sin \theta \cdot \sin 4 \theta